在等边三角形ABC中P为三角形内任意一点,AB=BC=CA=√(25+√12),CP^2=AP^2+BP^2,CP=5,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 00:24:32
在等边三角形ABC中P为三角形内任意一点,AB=BC=CA=√(25+√12),CP^2=AP^2+BP^2,CP=5,求AP,BP的长
以PA为边作等边三角形PAQ,使P、Q在AC的两侧.
∵△ABC、△APQ都是正三角形,∴AB=AC、AP=AQ、∠BAC=∠PAQ=∠AQP=60°,
∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ.
由AB=AC、AP=AQ、∠BAP=∠CAQ,得:△ABP≌△ACQ,∴BP=CQ.
∵△APQ是正三角形,∴PQ=AP,又CQ=BP、CP^2=AP^2+BP^2,
∴CP^2=PQ^2+CQ^2,∴由勾股定理的逆定理,有:∠PQC=90°,而∠AQP=60°,
∴∠AQC=∠PQC+∠AQP=90°+60°=(180°-30°),∴cos∠AQC=-cos30°=-√3/2.
由余弦定理,有:AQ^2+CQ^2-2AQ×CQcos∠AQC=AC^2,
∴AP^2+BP^2+√3AP×BP=25+√12=25+2√3,∴AP^2+BP^2+√3AP×BP=25+2√3,
又AP^2+BP^2=CP^2=25,∴25+√3AP×BP=25+2√3,∴AP×BP=2.
∴AP^2+BP^2=(AP+BP)^2-2AP×BP=(AP+BP)^2-2×2=25,∴AP+BP=√29.
∵AP+BP=√29、AP×BP=2,
∴由韦达定理可知:AP、BP是方程x^2-√29x+2=0的两根,由求根公式,得:
x=[√29+√(29-4×2)]/2=(√29-√21)/2、或x=(√28-√21)/2.
∴满足条件的AP、BP的长是:一者为(√29-√21)/2,另一者为(√28-√21)/2.
∵△ABC、△APQ都是正三角形,∴AB=AC、AP=AQ、∠BAC=∠PAQ=∠AQP=60°,
∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ.
由AB=AC、AP=AQ、∠BAP=∠CAQ,得:△ABP≌△ACQ,∴BP=CQ.
∵△APQ是正三角形,∴PQ=AP,又CQ=BP、CP^2=AP^2+BP^2,
∴CP^2=PQ^2+CQ^2,∴由勾股定理的逆定理,有:∠PQC=90°,而∠AQP=60°,
∴∠AQC=∠PQC+∠AQP=90°+60°=(180°-30°),∴cos∠AQC=-cos30°=-√3/2.
由余弦定理,有:AQ^2+CQ^2-2AQ×CQcos∠AQC=AC^2,
∴AP^2+BP^2+√3AP×BP=25+√12=25+2√3,∴AP^2+BP^2+√3AP×BP=25+2√3,
又AP^2+BP^2=CP^2=25,∴25+√3AP×BP=25+2√3,∴AP×BP=2.
∴AP^2+BP^2=(AP+BP)^2-2AP×BP=(AP+BP)^2-2×2=25,∴AP+BP=√29.
∵AP+BP=√29、AP×BP=2,
∴由韦达定理可知:AP、BP是方程x^2-√29x+2=0的两根,由求根公式,得:
x=[√29+√(29-4×2)]/2=(√29-√21)/2、或x=(√28-√21)/2.
∴满足条件的AP、BP的长是:一者为(√29-√21)/2,另一者为(√28-√21)/2.
在等边三角形ABC中P为三角形内任意一点,AB=BC=CA=√(25+√12),CP^2=AP^2+BP^2,CP=5,
在三角形ABC中AB=AC若P为BC边上任意一点,那么AB^2+AP^2=BP*CP成立吗
在三角形ABC中,点P为三角形内任意一点,连接AP、BP、CP,求证AB+BC+CA>1/2(AP+BP+CP)
三角形ABC中,AB=AC,P为BC延长线上一点,求证AP^2-AB^2=BP*CP
如图,在三角形ABC中,AB=AC,点P是边BC上任意一点,试说明AB^2-AP^2=BP乘CP
如图,已知三角形ABC中,AB=AC,P是BC边上任意一点,连结AP.求证; AC^2=AP^2+CP×BP
p为三角形ABC中任意一点,求证;AB+BC+CA>AP+BP+CP
在三角形ABC中,AC=2AB,角BAC等于60度,P为三角形内一点,AP=√3,BP=2,CP=5,求三角形ABC的面
如图,三角形ABC中,AB=AC,P为BC上一点,BP=2,CP=5,求AB²-AP²
P为△ABC内任意一点,求证:向量AP*向量BC+向量BP*向量CA+向量CP*向量AB=0
在三角形ABC中,AB=AC=4,P为BC上任意一点,求AP平方加BP乘以CP
在三角形ABC中,角BAC是九十度,AB=BC,P为BC上任意一点,请用学过的知识说明:BP的平方+CP的平方=2AP平