为什么椭圆上的点到两焦点的距离和总是为2a?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:46:05
为什么椭圆上的点到两焦点的距离和总是为2a?
椭圆公式:x^2/a^2 + y^2/b^2 = 1 (a>b>0)
两焦点( -a ,0 ) ( a ,0 )
设(x,y)是椭圆上的点,有:
根号[(x+a)^2 + y^2] + 根号[ (x-a)^2 + y^2 ] = 椭圆上的点到两焦点的距离之和,定义是2a,我们直接代入验证即可
平方有:
(x+a)^2 + y^2 + (x-a)^2 + y^2 +
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【(x+a)^2 +(x-a)^2】]
= 2x^2 + 2y^2 + 2a^2 +
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【2x^2 + 2a^2】] = 4a^2
移项有:
2x^2 + 2y^2 - 2a^2 =
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【2x^2 + 2a^2】]
两边平方:
4x^4 + 4y^4 + 4a^4 + 8x^2×y^2 - 8x^2×a^2 - 8y^2×a^2=
4x^4 - 8a^2×x^2 + 4a^4 + 4y^4 + 8y^2×x^2 + 8y^2×a^2
显然上式成立,所以距离之和为2a从焦半径:|PF1|=a+ex0 |PF2|=a-ex0 |PF1|+|PF2|=2a
再问: 这个是定义出来的,我意思是 在你不知道椭圆公式前提下,你怎么证明的
再答: 你可以用一根绳子,定住他的两端,这两端就是焦点 用笔在绷着绳子画一个椭圆 椭圆定义:平面上的点到两点距离之和为定值的点的轨迹为椭圆 因此,椭圆上任意一点到两焦点距离和为2a,a为该椭圆长轴的长度
再问: 我要考试这么写估计得零分了
两焦点( -a ,0 ) ( a ,0 )
设(x,y)是椭圆上的点,有:
根号[(x+a)^2 + y^2] + 根号[ (x-a)^2 + y^2 ] = 椭圆上的点到两焦点的距离之和,定义是2a,我们直接代入验证即可
平方有:
(x+a)^2 + y^2 + (x-a)^2 + y^2 +
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【(x+a)^2 +(x-a)^2】]
= 2x^2 + 2y^2 + 2a^2 +
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【2x^2 + 2a^2】] = 4a^2
移项有:
2x^2 + 2y^2 - 2a^2 =
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【2x^2 + 2a^2】]
两边平方:
4x^4 + 4y^4 + 4a^4 + 8x^2×y^2 - 8x^2×a^2 - 8y^2×a^2=
4x^4 - 8a^2×x^2 + 4a^4 + 4y^4 + 8y^2×x^2 + 8y^2×a^2
显然上式成立,所以距离之和为2a从焦半径:|PF1|=a+ex0 |PF2|=a-ex0 |PF1|+|PF2|=2a
再问: 这个是定义出来的,我意思是 在你不知道椭圆公式前提下,你怎么证明的
再答: 你可以用一根绳子,定住他的两端,这两端就是焦点 用笔在绷着绳子画一个椭圆 椭圆定义:平面上的点到两点距离之和为定值的点的轨迹为椭圆 因此,椭圆上任意一点到两焦点距离和为2a,a为该椭圆长轴的长度
再问: 我要考试这么写估计得零分了
为什么椭圆上的点到两焦点的距离和总是为2a?
椭圆两焦点距离为16,且椭圆上某一点到两焦点距离分别为9和15,则椭圆的标准方程是?
椭圆上的点到两焦点的距离之和为6
关于椭圆和直线的焦点已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线x-y+2√2=0的距离为3.(1)
焦点在x轴上,焦距为2,椭圆上一点M与两焦点的距离和为6,求椭圆的标准方程
怎样证明椭圆上的点到两焦点的距离之和等于2a
已知椭圆的中心在坐标原点O,焦点在X轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,椭圆上一点到焦点的最大距离为√2+
椭圆的2a指的是椭圆上任意一点到两焦点的距离和还是椭圆的长轴
为什么椭圆的短轴端点到焦点的距离为a
椭圆上一点到两焦点的距离和
已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线x-y+2倍庚号2的距离为3,(
椭圆长轴长2a和椭圆上一点到两焦点的距离之和2a,这两个2a一样吗?