已知函数f(x)=ax^3+bx^2+cx是R上的奇函数,且f(1)=3,f(2)=12.若(a-1)^3+2a-4=0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 21:32:12
已知函数f(x)=ax^3+bx^2+cx是R上的奇函数,且f(1)=3,f(2)=12.若(a-1)^3+2a-4=0,(b-1)^3=2b=0,求a+b的值
f(x)=ax^3+bx^2+cx是R上的奇函数
∴f(-x)=-ax³+bx²-cx=-f(x)=-(ax³+bx+c)
∴b=0
∵f(1)=3 f(2)=12
∴a+c=3
8a+2c=12
∴a=1
c=2
∴a=1
b=0
c=2
(a-1)^3+2a-4=0,(b-1)^3+2b=o
(a-1)³+2(a-1)-2=0
(b-1)³+2(b-1)+2=0
(1-b)³+2(1-b)-2=0
∴a-1=1-b
a+b=2
∴f(-x)=-ax³+bx²-cx=-f(x)=-(ax³+bx+c)
∴b=0
∵f(1)=3 f(2)=12
∴a+c=3
8a+2c=12
∴a=1
c=2
∴a=1
b=0
c=2
(a-1)^3+2a-4=0,(b-1)^3+2b=o
(a-1)³+2(a-1)-2=0
(b-1)³+2(b-1)+2=0
(1-b)³+2(1-b)-2=0
∴a-1=1-b
a+b=2
已知函数f(x)=ax^3+bx^2+cx是R上的奇函数,且f(1)=3,f(2)=12.若(a-1)^3+2a-4=0
已知 f(x)=ax^3+bx^2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取得极值1
已知函数f(x)=ax^3+bx^2+cx是R上的奇函数,且f(1)=3f(2)=12求abc的值
已知函数f(x)=ax^3+bx^2+cx是R上的奇函数且f(1)=3 f(2)=12
已知函数f(x)=ax^3+bx^2+cx,是在R上的奇函数,且,f(1)=3,f(2)=12
已知函数f(x)=ax^3+bx^2+cx,是在R上的奇函数,且,f(1)=2,f(2)=10
已知函数f(x)=ax^3+bx^2+cx+d是R上的奇函数,且在x=1时取得极小值-2/3
【急】已知函数f(x)=ax^3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2
(本小题14分) 已知函数f(x)=ax 3 +bx 2 +cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取极值
已知函数f(x)=ax∧3+-bx^2+cx(a≠0)是定义在R上的奇函数,且X=-1时,函数f(x)取极值1.求函数f
已知函数f(x)=ax^3+cx+d(a≠0)是R上的奇函数,当x=1时函数f(x)取得极值-2 求函数f(x)的单调区
已知函数f(x)=2x^2+x-k,g(x)=ax^3+bx^2+cx+d(a不等于0)是r上的奇函数当x=1,g(x)