作业帮 > 综合 > 作业

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*)

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 08:33:15
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1>0,则xn+1与xn的关系正确的是(  )

A.x
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*)
由题可得f′(x)=2x.
所以曲线y=f(x)在点(xn,f(xn))处的切线方程是:y-f(xn)=f′(xn)(x-xn).
即y-(xn2-4)=2xn(x-xn).
令y=0,得-(xn2-4)=2xn(xn+1-xn).
即xn2+4=2xnxn+1
显然xn≠0,
∴xn+1=
xn
2+
2
xn.
故选A.