若f''(x)存在,且y=f(x^2),求(d^2y)/(dx^2)
若f''(x)存在,且y=f(x^2),求(d^2y)/(dx^2)
一道高数题,设y=ln【f(x)】,其中f’’(x)存在,求(d^2y)/(dx^2) ,
若f(x)具有二阶导数,且f'(x)=1,x+y=f(y),求d^2y/dx^2 在线等,
若df(x,y)=(2x-y)dx+(2y-x)dy 且f(0,0)=1 试求函数f(x,y)
设y=y(x)由方程xe^f(u)=e^y确定,其中f的二阶可导,且f'≠1求d^2(y)/dx^2
设f''(x)存在,求下列函数的二阶导数d^2y/dx^2
设f''(u)存在,求下列函数的二阶导数d^2y/dx^2 (1)y=f(x^2) (2)y=
设f''(x)存在,求下列函数的二阶函数d^2y/dx^2:(1)y=f(x^2)
f(x)具有二阶连续导数,f(0)=1,f'(0)=-1,且[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]
设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0
设f(t)是二次可微函数且f''(t)不等于0 x=f'(t),y=tf'(t)-f(t),求dy/dx,d^2y/dx
y=f(e^x),其中f具有二阶导数,求dy/dx及d^2y/dx^2