设f(x)在[0,1]上可微,且f(0)=0,f`(x)的绝对值小于等于pf(x)的绝对值,0小于p小于1,证明.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:42:22
设f(x)在[0,1]上可微,且f(0)=0,f`(x)的绝对值小于等于pf(x)的绝对值,0小于p小于1,证明.
设f(x)在[0,1]上可微,且f(0)=0,f`(x)的绝对值小于等于pf(x)的绝对值,0小于p小于1,证明[0,1]上f(x)恒等于0
设f(x)在[0,1]上可微,且f(0)=0,f`(x)的绝对值小于等于pf(x)的绝对值,0小于p小于1,证明[0,1]上f(x)恒等于0
设|f(x)|在[0,1]上最大值为|f(a)|,0≤a≤1
则|f(a)|=|∫[0->a]f'(t)dt|≤p∫[0->a]|f(t)|dt
≤p∫[0->a]|f(a)|dt=ap|f(a)|
∴|f(a)|(1-ap)≤0,而0≤ap≤p0,∴|f(a)|≤0,即|f(a)|=0
∴而x∈[0,1]时,|f(x)|≤|f(a)|=0
∴|f(x)|=0,即f(x)=0,x∈[0,1]
则|f(a)|=|∫[0->a]f'(t)dt|≤p∫[0->a]|f(t)|dt
≤p∫[0->a]|f(a)|dt=ap|f(a)|
∴|f(a)|(1-ap)≤0,而0≤ap≤p0,∴|f(a)|≤0,即|f(a)|=0
∴而x∈[0,1]时,|f(x)|≤|f(a)|=0
∴|f(x)|=0,即f(x)=0,x∈[0,1]
设f(x)在[0,1]上可微,且f(0)=0,f`(x)的绝对值小于等于pf(x)的绝对值,0小于p小于1,证明.
设F(X)=ax+bx+c(a不等于0),当X的绝对值小于等于1时,总有F(X)的绝对值小于等于1
设函数F(X)=X-1的绝对值+X-a 的绝对值,(a 小于0)问:若a =-1.解不等式F(X)大于
设函数F(X)=X-1的绝对值+X-a 的绝对值,(a 小于0)问:若a =-1.解不等式F(X)大于等于
设f(x)为分段函数,当x绝对值大于等于1,f(x)=x的平方;当x绝对值小于1,f(x)=x
函数的奇偶性问题!设f(x)是定义在R上的奇函数,且f(x+2)=-f(x),又知道0小于X小于等于1时f(X)=X,则
证明:如果函数f(x)在[a,b]上可导,且(f(x)导数的绝对值)小于等于M,则,[(f(b)-f(a))的绝对值 .
函数f(x)在[0,1]上连续,在(0,1)内可微,且f(x)导数的绝对值小于1,又f(0)=f(1),证明对于[0,1
高数问题设f(x)在【-1,1】内有定义,且|f(x)|小于等于(x的平方),则f`(0)=( )
设函数f(x)=x^2-2倍的x的绝对值-1(-3小于等于x小于等于3)(1)证明f(x)是偶函数
设X的概率密度为f(x)={1x1,-1小于等于X小于等于1 0,其他 求 X的分布函数F(X);
已知定义在R上的奇函数f(x),当x大于0时,f(x)=x的平方+x的绝对值-1 那么,x小于0时f(x)等于多少