已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点F,右顶点为A,且BF垂直x轴,直线看问题补充
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:19:34
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点F,右顶点为A,且BF垂直x轴,直线看问题补充
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直x轴,直线AB交y轴于点P,若AP的绝对值=2倍PB的绝对值,则椭圆的离心率是,求用向量法解
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直x轴,直线AB交y轴于点P,若AP的绝对值=2倍PB的绝对值,则椭圆的离心率是,求用向量法解,好像要什么设点
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直x轴,直线AB交y轴于点P,若AP的绝对值=2倍PB的绝对值,则椭圆的离心率是,求用向量法解
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直x轴,直线AB交y轴于点P,若AP的绝对值=2倍PB的绝对值,则椭圆的离心率是,求用向量法解,好像要什么设点
由已知,可得:F(-c,0),A(a,0),
将F点坐标代入椭圆:x^2/a^2+y^2/b^2=1,
可得:B点坐标为 (-c,b^2/a) 或 (-c,-b^2/a).
考虑椭圆的对称性,B取(-c,b^2/a),
设点P(0,y),
则;向量AP=(-a,y),向量PB=(-c,b^2/a-y).
又 |AP|=2|PB|,
所以 向量AP=2向量PB,即
(-a,y)=2(-c,b^2/a-y),
所以 -a=-2c,y=2(b^2/a-y),
所以 a=2c,e=c/a=1/2.
故椭圆的离心率是1/2.
将F点坐标代入椭圆:x^2/a^2+y^2/b^2=1,
可得:B点坐标为 (-c,b^2/a) 或 (-c,-b^2/a).
考虑椭圆的对称性,B取(-c,b^2/a),
设点P(0,y),
则;向量AP=(-a,y),向量PB=(-c,b^2/a-y).
又 |AP|=2|PB|,
所以 向量AP=2向量PB,即
(-a,y)=2(-c,b^2/a-y),
所以 -a=-2c,y=2(b^2/a-y),
所以 a=2c,e=c/a=1/2.
故椭圆的离心率是1/2.
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点F,右顶点为A,且BF垂直x轴,直线看问题补充
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直X轴,直线AB
已知椭圆x^2/a^2+y^2/b^2=1 a大于b大于0 的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直于X 直线
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直于X轴,直线AB交Y轴
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交Y轴于点
设椭圆 x^2/a^2 + y^2/b^2=1(a>b>0)的左焦点为F,上顶点为A,过点A且与AF垂直的光线经椭圆的右
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A
椭圆离心率已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右顶点分别是A、B,右焦点是F,过F点作直线与长
已知椭圆x^2/a^2+y^2/b^2=1的左顶点为A,上顶点为B,右焦点为F,设AB中点为M,若2MA*MF+BF^2
已知B是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,F是椭圆右焦点,且BF垂直于x轴,B(1,3/2)
已知椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与
已知椭圆(X^2/a^2)+(y^2/b^2)=1 (a>b>0)的左顶点为A,右焦点为F(c,0),且2b、a、c成等