其中b为矩阵a的列向量之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:01:23
其中b为矩阵a的列向量之和
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

如果A矩阵列向量线性相关那么A矩阵是否行向量也线性相关 由A列向量线性相关得出A的行列式为0

这个是不对的..你说的A的行列式为0,就默认了A是nxn的方阵了.可是A可以是mxn的一般矩阵啊.比如A是3x5的矩阵.且A的秩r(A)=3,那么A的五个列向量的秩为3,列向量必然是线性相关的.但是三

设A,B为3阶方阵,B的列向量都是线性方程组Ax=β的解向量,其中β=(1,2,3)T.则矩阵(AB)*的秩

AB=﹙βββ﹚=┏111┓┃222┃┗333┛(AB)*=0[零矩阵],(AB)*的秩=0

线代题!设AB为满足AB=0的任意非零矩阵,则有 a.A的列向量组线性相关,B的行向量组线性相关 b.A的列向量组线性相

想岔了A的列向量线性相关,怎么推出它的行向量组线性相关呢比如A=122011应该是r(A)再问:因为当时用手机问,没有追问,不好意思~这题题目一该是准确的提问是“必有”一下哪个选项,才对。否则根据列向

线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)

应该要让P可逆.设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A,B)可逆,且B‘A=0.证明:考虑齐次线性方程组A'x=0,系数矩阵A'的秩是m

设A,B为满足AB=0的任意两个非零矩阵,A的行向量和列向量是否相关,B的行向量和列向量是否相关?为什么?

知识:设A,B分别为m*n,n*s矩阵,若AB=0,则r(A)+r(B)=1,r(B)>=1所以r(A)再问:那A的行向量和b的列向量呢再答:这不一定!再问:不能证明?再答:结果不定,证明什么

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

a b c 均为n阶矩阵 ab=c 且b可逆,为什么有c的列向量组与a的列向量组等价

ab=ca=cb^(-1)a,c的列向量组能互相表示,故c的列向量组与a的列向量组等价再问:为什么不是ac的行向量组能相互表示呢?再答:那是不行的a=(a1,a2,...,an)^Tnx1矩阵如何右乘

设A是n×m矩阵,B是m×n矩阵,其中n<m,I是n阶单位矩阵,若AB=I,证明B的列向量组线性无关.

证明:设B1,B2,…,Bn为B的列向量组,假设存在k1,k2,…,Kn,使得k1B1+k2B2+…+knBn=0,则:A(k1B1+k2B2+…+knBn)=0,即:k1AB1+k2AB2+…+kn

A是4*3的矩阵,列向量组线性无关,B为三阶可逆矩阵,则AB的秩是多少

A是4*3的矩阵,列向量组线性无关,则矩阵A的秩为3,即rank(A)=3.B为三阶可逆矩阵,乘以一个可逆矩阵不改变秩,所以,rank(AB)=rank(A)=3,即AB秩为3.

设A为m×n矩阵,B为n×s矩阵,已知A的列向量组线性无关,证明:B与AB有相同的秩

考虑方程ABx=0,由于A的列向量线性无关,所以只可能是Bx=0.这说明ABx=0的解空间与Bx=0的解空间相同,其中ABx=0解空间的维度为s-r(AB),Bx=0解空间的维度是s-r(B).两个方

n阶非奇异矩阵A的列向量为a1,a2...an,n阶矩阵B的列向量为b1 b2...bn若b1=a1+a2...bn=a

n为偶数时:b1-b2+b3-b4+……-bn=0∴﹛b1,b2,……bn﹜线性相关.设k1b1+k2b2+……+k﹙n-1﹚b﹙n-1﹚=0即k1a1+﹙k1+k2﹚a2+﹙k2+k3﹚a3+……+

为什么个矩阵A的列向量组可以由矩阵B的列向量组表示时,那么A的秩就小于等于B的秩?

矩阵A的列向量组可以由矩阵B的列向量组表示时一定存在C有A=BC,(你把每个表达式写出来,组合一下就可以得到这个式子)R(A)=R(AB)

若矩阵B的列向量组能由矩阵A的列向量线性表示,则

AX=B的解存在再问:那么矩阵A和B的秩有什么关系呢再答:A的秩不小于B的秩

P为m*n矩阵,r(P)=1怎么推出P=AB,其中A为m维列向量,B为n维行向量

因为,r(P)=1所以,P的最大线性无关向量组为α所以,P的行向量都可以用α表示所以,k1αk2αP=..knα如果向量B和α线性相关,则,存在数x使得B=xα(如果向量B和α线性无关,则该命题是不成