内接于半径为a的球且有最大体积的长方体
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:29:08
很简单根据正弦定理由2R[(sinA)²-(sinC)²]=(√2*a-b)*sinB得到a²-c²=√2ab-b²根据余弦定理cosC=(a&sup
4r/3:设内接于球的圆锥高为h,则圆锥底半径为p,有p^2=r^2-(h-r)^2=2rh-h^2,体积为V=3.14*(2rh-h^2)*h/3,取其导数,当V`=0,即h=4r/3时,体积取极值
设圆锥半径为r,那么圆锥的高可表示为[R+R2−r2],圆锥的体积可表示为 V=π×r2×R+R2−r23对r求导数并令其等于零,可得 R2+R2−r2−r
我这边有一道题目和你这道很相似,请问提问者题目是否打错呢如果题目是图片这样答案在下面,如果不是,追问我,我手打
2R(sin²A-sin²C)=(√2a-b)sinB(2R)²sin²A-(2R)²sin²C=(√2a-b)*(2R)SinBa&sup
一楼的同学,你不会做就不要乱猜.看图.
底面所在圆的周长不能这么算,A,B两点的的球面距离为π,但ABC所在圆的周长不是3π!球面距离你理解错了!
设它是h,过球心做圆柱底面的垂线,底面的半径可以通过勾股定理用h/2和R表示,然后求出圆柱体积关于h的函数表达式,求最值即得~
半径为9的圆锥内接与半径为9的球,画一直径过圆锥顶点,圆心到圆锥底面距离为7,求出圆锥半径(9²-7²)½=4*2½,求出圆锥母线长48*2½设圆锥内
内接圆柱可知R²=r²+h²而圆柱体积v=πr²xh所以V=π(R²-h²)xh这个要求最大值,我不知道你是几年级的所以不知道你懂不懂求导来
如果求最小值,不需要高等数学了,只需要推理就行了.因为圆内接长方体的边总有一边可以无限接近.最后为0,变为了平面,即变成过球直径的一个平面,这样长方体的高就为0了,所以根据体积公式V=长*宽*高,则体
设圆柱底面半径为r,高为h,球的半径为R.则由题可知:h=4r又因为:πr2×h=500π,即4πr3=500π所以:r=5又因为:R2=r2(h/2)2(画一个平面图形可得出)所以:R=√125根据
(2r)^2+h^2=(2R)^24r^2+h^2=4R^2V=πr^2hV^2=(π^2)(r^4)(h^2)=[(π^2)/4]*(2r^2)(2r^2)(h^2)
由题意知球心在内接圆柱轴上高的中点,则有:R²=r²+(h/2)²即h²=4R²-4r²以下用基本不等式来求体积最大值因为内接圆柱的体积V=
由题意,r²+(h/2)²=R²V=πr²×h≤π[(r+r+h)/3]³取最大值时,r=h所以r²+(r/2)²=R²
设长方体长宽高为a,b,c则对角线为球的直径2R,即a²+b²+c²=4R²,则4R²=a²+b²+c²≥ac+ac+b
设圆柱体的底面半径为r,则球心到底面的高(即圆柱高的一半)为d,则d=R2−r2,则圆柱的高为h=2R2−r2则圆柱的体积V=πr2h≤12π(r2+h)当且仅当r2=h时V取最大值即r2=2R2−r
要用均值不等式如图手机提问的朋友在客户端右上角评价点【采纳】即可
4x√(R^2-x^2)对x求导后令其=0得x=R/2,x=R(略去)2πr^2√(R^2-r^2)对r求导后令其=0得……好像是R/3
圆柱体积:兀r^2*h在由R、r、和(h/2)组成的直角三角形中,r^2=R^2-(h/2)^2.代入上式,得V=兀(R^2-(h/2)^2)*h=兀R^h-兀h^3/4对其求导,并等于0,求得h=(