函数F(X)=1 (1-X) tan(2分之πx)落在(-3,5)的所有0点之和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:00:10
-3或者1再问:求详解·,谢谢再答:这是分段函数啊。。当X>=0时,FX=2X+1。。然后你把2X0+1=3带入,求出X0=1当X
∵f(x)=sinx+cosx,∴f'(x)=cosx-sinx,∴F(x)=f'(x)[f(x)+f'(x)]-1=(cosx-sinx)(sinx+cosx+cosx-sinx)-1=2cos^2
f(-1)=(-2-1)/(-1)=3f(1)=(2-1)/1=1f(-1)=f(1)和f(-1)=-f(1)都不成立所以是非奇非偶函数
f(2x+1)=(2x+1)/(x+1)令2x+1=t,x+1≠0,x≠-1x=(t-1)/2∴f(t)=f(2x+1)=(2x+1)/(x+1)=t/[(t-1)/2+1]=2t/(t+1)∴f(x
f(x)是一次函数,设为f(x)=kx+b(k≠0)f(kx+b)=4x-1=4/k(kx+b)-4b/k+1f(x)=4/k*x-4b/k+1与f(x)=kx+b对应系数相等得到:k=2,b=1/3
x0,f(-x)=-x(1-x)=-f(x);x>0时,-x再问:问一下。如果fx=x,x<0,x(1+x),x大于零的话也可以证到f(-x)=-(fx)但很显然不是奇函数。解释一下吧?再答:没看明白
设一次函数f(x)=kx+b,→f[f(x)]=k(kx+b)+b=k*kx+kb+b=2x+1∴k*k=2,k=±√2kb+b=1,b(k+1)=1,b=1/(k+1)k=√2,时b=√2-1,k=
设f(x)=kx+bf[f(x)]=k(kx+b)+b=k^2x+(kb+b)=4x+1===>k^2=4,kb+b=b(k+1)=11.若k=2,则b=1/(k+1)=1/3f(x)=2x+1/32
1+sinx,(x再问:能给详细步骤吗再答:就是f(x)在x=0处的左右极限都存在且等于f(0)的值
设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c
分段函数分段讨论当X
f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3
对于命题p:∵0
画图可知f(x)就是周期为1的函数,且在[0,1)上是一直线y=x的对应部分的含左端点,不包右端点的线段,要有三解,只需直线y=kx+k过点(3,1)与直线y=kx+k过点(2,1)之间即可.第二条直
二画图可知,当a于(-1,0),b属于(-2,-1)时可能存在F(a)=F(b)所以0
1.设一次函数f(x)=kx+b,(k≠0),则f(f(x))=k(kx+b)+b=k²x+b(k+1),由题意,k²x+b(k+1)=1+2x,∴k²=2且b(k+1)
这是一个分段函数,在x=0上有不同定义.(1)a=0时成立.正确(2)a^2>=0,b^2>=0,因此f(a^2)+f(b^2)=e^(a^2)+e^(b^2),以下是均值不等式.正确(3)a=b=-
2f(1/x)-f(x)=x把1/x换成x,2f(x)-f(1/x)=1/x第二式乘以2,两式相加f(x)=1/3乘以x+2/3乘以1/x
1.有界cosx是余弦曲线,它的值域是[-1,1],存在M,使得f(x)M,也就是说,不存在M,使得f(x)
f(x)=ax²+bx+cf(x+1)=a(x+1)²+b(x+1)+c=ax²+2ax+a+bx+b+cf(x-1)=a(x-1)²+b(x-1)+c=ax&