四边形ABCD内接于圆心O,∠B=50°,∠ACD=25°,∠BAD=65°.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:21:10
四边形ABCD内接于圆心O,∠B=50°,∠ACD=25°,∠BAD=65°.
如图,四边形abcd内接于圆o,ad于bc的延长线相交于点p,∠p的平分线交ab于e,交cd于f,

证明:根据定理“三角形任一外角等于不相邻两个内角的和”可得:∠AEF=∠B+∠BPE∠DFE=∠PDF+∠APE因为EP是∠APB的平分线所以∠APE=∠BPE因为∠B=∠PDF(圆内接四边形外角等于

如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE

答:第二问:延长BA,CE,交于一点P因为DA=DA,角DAB=角DAP=90°,角ADB=角ADE(角平分线)所以三角形ADB和三角形ADP全等.所以AP=AB,即PB=2PA又BD是直径,所以角B

如图,ABCD是⊙O内接四边形∠ABD=∠CBD=60°,AC与BD交于E点

△ACD为等边三角形证明∠ACD=∠CBD=60°∠CAD=∠ABD=60°∠ADC=180°-60°-60°=60°所以△ACD为等边三角形过C点,作BD边上的高,CH容易求得∠BCD=60+15=

已知:四边形ABCD内接于圆O,AB是直径,CE切圆O于C,AE垂直CE,交圆O于D,求证DC=BC(为什么∠ECD=∠

∵AB是直径∴AD⊥BD∵AE⊥CE∴CE∥BD∴∠ECD=∠CDB∵CE是切线∴∠ECD=∠CBD(弦切角=圆周角,这是个定理)∴∠CDB=∠CBD∴DC=BC

已知四边形ABCD内接于圆O,且角A:角B=1:2,则角BOD=?

因为四边形ABCD内接于圆O,设钝角BOD为角1较大的角BOD为角2所以角1=2角A角2=2角C所以角1:角1=1:2而角1+角2=360°所以角BOD=120°

已知:四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分∠BAD.证明三角形ABC相似三角形bCE

∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).

已知四边形ABCD内接于圆O

对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于

已知四边形ABCD内接于圆O,AC⊥BD,OE⊥AB于点E

证明:作直径AG,连接BG,则BG⊥AB∵OE⊥AB于E,∴E是AB的中点∴OE=BG/2又AC⊥BD,BG⊥AB,∠ADP=∠BGA∴CD=BG∴OE=BG/2=CD/2证毕!

已知四边形ABCD内接于圆O,AC平分∠BAD,AB与DC的延长线交于点E,AC=CE.求AD=BE

证明:∠ABC+∠D=180°(圆内接四边形对角互补);∠ABC+∠EBC=180°(平角定义).∴∠EBC=∠D.(等式的性质)又AC平分∠BAD;AC=CE,则∠E=∠EAC=∠CAD.所以,⊿A

已知,如图四边形ABCD内接于圆O,CD是远O的直径CB=BA,MN切圆O于A,∠DAM=28° 求∠B,∠BAN

∠B=118°,∠BAN=31°连接AC、BO因为弦切角=同弧所对圆心角的一半=同弧所对圆周角,所以由题得:对于弧AD:∠DAM=28°=½∠AOD=∠ACD,则∠ACD=28°,∠AOD=

看图形证明切线如图,四边形ABCD内接于圆心O.BD是圆心O的直径,AE垂直于CD,垂足为E,DA平分角BDE(1)求证

(1)已知,角ADB=角ADE又角AED=角BAD=90度所以,角EAD=角ABD故AE是圆心O的切线(2)角DBC=30度所以角BDC=60度所以角ADB=角ADE=60度三角形AOD为等边三角形A

;四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB,DA交于P,过C点作PD的垂线交PD的延长线于

第一个问题:∵∠AOB、∠ACB分别是⊙O的圆心角、圆周角,∴∠AOB=2∠ACB.∵AB=AD,∴∠ACB=∠ACD,∴∠DCB=2∠ACB.由∠AOB=2∠ACB、∠DCB=2∠ACB,得:∠AO

看图形证明圆的切线如图,四边形ABCD内接于圆心O.BD是圆心O的直径,AE垂直于CD,垂足为E,DA平分角BDE(1)

证明:(1)连接OA∵AE垂直于CD,垂足为E,DA平分角BDE∴∠ADB=∠ADE∠EAD+∠ADE=90°又∵OA=OB∴∠OAD=∠ADB∵∠ADB=∠ADE∠OAD=∠ADB∠EAD+∠ADE

四边形ABCD内接于圆O若∠BOD=100°则∠DAB

就是说一个四边形的四个定点到圆的圆心的距离相等切等于圆的半径圆心是O这个题有两个答案一个是圆心的四边形内答案是50度圆心在四边形外答案是230度所以答案为230或50度

如图,已知四边形ABCD内接于⊙O,∠BOD=80°,求∠BAD和∠BCD的度数.

∵∠BOD=80°,∴∠BAD=40°.又∵ABCD是圆的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=140°.

如图,四边形ABCD内接于圆心O,CD平行AB且AB是圆心O的直径,AE垂直CD延长线于点E,求证:AE就圆O的切线

AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/

已知四边形ABCD内接于直径为3的圆O,

如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等),  ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs

简单填空题.急1.四边形ABCD内接于圆O,角BOD=160,则角BAD=___,角BCD___2.在圆内接四边形ABC

1.80°,100°2.120°3.85°4.5cm5.1/12,1/66.1/47.24cm,144πcm2(cm平方的平方怎么打?)8.π9.AO=BO(圆O半径)AC=OC(圆C半径)AE=ED

四边形abcd内接于⊙O,⊙O半径为2,ab=bc,∠a=75°,∠b=120°,求四边形周长

解题思路:构造直角三角形,运用三角形函数进行求解                      解题过程:解:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°,∠BAD+∠BCD=180°∵∠A