圆O的直径AB为10,BC为6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:15:28
你的问题呢问题是什么啊
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线
连接CD则CD垂直ABCD垂直平分AB,平分角BCABD=6CD=8连接BG则BF垂直AC,BG平行EFBG*AC=AB*CDBG=12*8/10=9.6CG方=BC方-BG方=10方-9.6方=19
3cm根据圆的特性角ACB为直角,所以三角形ACB为直角三角形O为AB中点,所以OD/BC=AO/AB=1/2所以OD=3CM
证明如下:连结AC.∵AB是直径,∴AC⊥CB.∵BC=PC,∴RT⊿ACB≌RT⊿ACP(RT⊿即直角三角形).∴AB=AP.且∠P=∠B.又∵∠D=∠B(同弧所对圆周角相等)∴∠P=∠D,故⊿PC
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
证明:连接OC.∵OD⊥BC,O为圆心,∴OD平分BC.∴DB=DC,在△OBD与△OCD中,OB=OCDO=DODB=DC∴△OBD≌△OCD.(SSS)∴∠OCD=∠OBD.又∵AB为⊙O的直径,
∵AB⊥CD,AB为直径,∴CE=1/2CD=3,连接OC,则OC=1/2AB=5,∴OE=√(OC²-CE²)=4,∴BC=√(BE²+CE²)=3√10,A
因为三角形ABC为直角三角形(斜边为圆的半径的三角形喂直角三角形)所以由勾股定理可知:BC的平方=AB的平方-AC的平方, 则:BC=8\x0d因为∠ACB的平分线交圆O于点D,所以∠ACD=∠DC
∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可
此题难度不小啊!码字不易,望楼主采纳!
根据相似性,可知三角形AOD相似于ABC.O为AB中点即平分AB,所以OD:BC=AO:AB=1:2所以OD=3cm
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
等腰三角形,角B=角C,对顶角相等,角C=角ECD,圆周角角B=角CDE,得,角CDE=角ECD.从而CE=CD.
总体思路是证明三角形CBA相似于三角形DBC,连接AC,延长CO交圆于E点,连BE,因为角BCD+角BCE=角BCE+角ACE=90度;所以角BCD=角ACE;又由圆的性质知:角ACE=角ABE(同一
因为AB为圆O的直径所以角ACB=90度因为AB=10,AC=6所以BC=8因为CD是角ACB的角平分线所以角ACD=角BCD=45度所以AD=BD因为AB为圆O的直径所以角ADB=90度,AD=BD
因为直径AB=5cm,弦AC=3cm,所以:∠ACB=∠ADB=90°且由勾股定理易得:AB=4cm又CD是∠ACB的平分线,则:∠ACD=∠BCD=45°因为∠ACD=∠ABD(同一圆中同弧所对圆周
思路:设ab与cd交与m,如果能求出cm,那么这题就很好做了作cn垂直ab与n;因为ac=6,bc=8,ab=10;所以an=3.6,cn=4.8;又因为cd平分角cab所以ac:cb=am:mb;所