在一项等比数列中,前3项和为1,前6和为9
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:18:50
(1)∵S2=a1+a2═6+d,b2=q,∴q+6+d=126+dq=3,解得d=3,q=3,故an=3+3(n-1)=3n,bn=1•3n-1=3n-1.(2)由(1)可知,Sn=n(3+3n)2
由Sn=3^(n+1)+r可知公比q=3取n=1得a1=9+r取n=2得a1+a2=4a1=27+r解得a1=6,r=-3
当n=1时,S1=a1=1-1/2=1/2当n>1时:an=Sn-S(n-1)=1-(1/2)^n-[1-(1/2)^(n-1)]=(1/2)^(n-1)-(1/2)^n=(1/2)^n综上所述,{a
S4=1,S8=17则S(5-8)=S8-S4=17-1=16=q^4*S4,所以q^4=16,q=±2
设{an}的公比为q,则a2=2q,a3=2q^2则(a2+1)^2=(a1+1)(a3+1)即(2q+1)^2=3(2q^2+1)解得q=1所以{an}为常数数列Sn=na1=2n
逆命题是:在公比不为1的等比数列{an}中,前n项的和为Sn,若a2,a4,a3成等差数列,则S2,S4,S3成等差数列.证明:设公比为q,则a2=a1q,a4=a1q³,a3=a1q&su
当公比为1时,Sn=n,数列{Sn+12}为数列{n+12}为公差为1的等差数列,不满足题意;当公比不为1时,Sn=1−qn1−q,∴Sn+12=1−qn1−q+12,Sn+1+12=1−qn+11−
设等比数列{a[n]}的公比为q则S[n]=a[1](1-qⁿ)/(1-q)=2(1-qⁿ)/(1-q)则S[n]+1=2(1-qⁿ)/(1-q)+1S[1]+1=
因数列{an}为等比,则an=2qn-1,因数列{an+1}也是等比数列,则(an+1+1)2=(an+1)(an+2+1)∴an+12+2an+1=anan+2+an+an+2∴an+an+2=2a
由题意可得a1+a2+a3+a4=1由等比数列的通项公式可得,a5+a6+a7+a8=(a1+a2+a3+a4)q4∴S8=S4+q4•S4=1+q4=17∴q=±2.故选:C
(Ⅰ)设{an}的公差为d,因为b2+S2=12q=S2b2所以b2+b2q=12,即q+q2=12,∴q=3或q=-4(舍),b2=3,s2=9,a2=6,d=3.故an=3+3(n-1)=3n,b
Sn=a1(1-q^n)/(1-q)S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S2+2=a1(1+q)+2S3+2=a1(1+q+q^2)+2[a1(1+q+q^2)+2]*[a1+2
新数列设为bnb1=a2=6公比变为9bn=6*9^(n-1)Sn=[6(1-9^n)]/(1-9)=[6(1-9^n)]/(-8)=[6(9^n-1)]/8=3(9^n-1)/4Sn=(9^n-1)
∵Sn=3n+a,∴a1=S1=3+a,∵an=Sn-Sn-1=(3n+a)-(3n-1+a)=2×3n-1,∴a1=2.又∵a1=S1=3+a,∴3+a=2,∴a=-1.∴an=2×3n-1.故答案
2=b1q=q、S2=a1+a2=2a1+d=6+d则:q+6+d=12、(6+d)/(q)=3解得:d=3、q=3得:a(n)=3nb(n)=3^(n-1)S(n)=(3/2)n(n+1)则:c(n
因数列{an}为等比,则an=3qn-1,因数列{an+1}也是等比数列,则(an+1+1)2=(an+1)(an+2+1)∴an+12+2an+1=anan+2+an+an+2∴an+an+2=2a
a5=a2×q^3=9×q^3=243,所以q=3,所以a1=3,a2=9,a3=27,a4=81,所以和是3+9+27+81=120再问:为什么a5=a2×q^3=9×q^3=243再答:这是公式啊
(a2+1)²=(a1+1)(a3+1)a1=2,设an公比q(2q+1)²=3(2q²+1)4q²+4q+1=6q²+32q²-4q+2=
设公比为q,a2²=a1*a3(a2+1)²=(a1+1)(a3+1)因为a1=2所以a2²=2a3(a2+1)²=3(a3+1)解得a2=2a3=2所以sn=
已知Sn=2An-1取n=1得:S1=2A1-1又因为S1=A1,解上述方程可得:A1=1Sn=2An-1S(n-1)=2A(n-1)-1注:"n-1"为下标上下两式相减得:Sn-S(n-1)=2An