复变函数z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:29:05
复变函数z
复变函数 f(z)=|z| 函数在何处可导何处解析

因为f(z)=|z|当趋于0-时f(z)=|-1;当趋于0+时f(z)=|1;右极限不等于左极限.所以f(z)=|z|在z=0处不可导而在处0以外的其他地方都可导且解析.这判断这种是有规律的,你要好好

复变函数,证明函数f(z)=e^z在整个复平面解析

e^z=e^(x+iy)=e^x(cosy+isiny),设实部u=e^xcosy,虚部v=e^xsiny∂u/∂x=e^xcosy,∂u/∂y=-e^

复变函数 f(z)=|z| 讨论可导性.

你好此函数仅在原点处可导谢谢

复变函数,奇点复变函数z/cosz的奇点

奇点就是无意义的点,cosz=0,z=pi/2+k*pi

复变函数 z=0为函数1/z^2+1/z^3的m级极点 m=?

lim(z趋于0)(1/z^2+1/z^3)z^3=1,为常数,那么是三级极点,m=3

复变函数计算积分∮1/(z-i/2)*(z+1)dz,其中c为|z|=2

这题也用不了柯西积分公式啊,用柯西积分公式需要能把被积函数化成一定的形式,本题用和柯西积分公式本质相同的留数定理计算.被积函数只要z=i/2和z=-1两个一级极点,并且它们都在积分圆周|z|=2内部,

一道复变函数积分题目C:|z|=2/3(z^2+2z+1)(z^2+1)

因为f(z)=1/(z^2+2z+1)(z^+1)在/z/再问:和我想的一样。不过我有个同学说这题能用留数解出,你确定f(z)在C内没有极点?没有极点还能用留数解?再答:因为在C没无极点,所以留数为零

求大神指教复变函数求极限lim(z/z共轭+z共轭/z),其中z趋向于0,

令,当θ不同时有不同结果,故极限不存在再问:明白了!谢谢!那这道呢,lim(1+z+...+z的n-1次方),其中n趋向于无穷大,拜托了,大神再答:用等比级数的公式求得部分和是对该式求极限,当|z|&

复变函数计算积分问题圆周|z|=2.求∮ z/(z-1)dz

是2πi.用柯西积分公式f(z0)=1/2πi∮f(z)/(z-z0)dz.可以令f(z)=z,则z0=1,所以此积分为2πi.

复变函数求∮dz/(z+2)(z-1),其中C:|z|=4为正向

答案在图片上,点击可放大.

一道复变函数题:Res[z^3*e(-1/z),0]=?

你那个表达式写清楚些(-1/z)是e的指数吧,那3*e(-1/z)是z的指数函数只是3是?

复变函数问题,∮In(1+z)dz |z|=1/2

在这个区域内积分函数处处解析,所以根据柯西古萨定律答案为0

复变函数 f(z)=(3z^2+i)^3怎么求导

这个就把z看成实变量对z求导就行

复变函数 z^2*sin(1/z)的留数

已知函数只有一个奇点0用留数的定义做积分可以得出函数在0点的留数为-1/6

复变函数问题f(z)=e的z次方在z=0处解析吗?

设z=x+iyf(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsinyRe[f(z)]=e^xcosy,Im[f(z)]=e^xsiny令u(x,y)=e^xcosy

复变函数,sin(z)的零点是几阶零点

sin(z)在整个复平面是解析的,从而sin(z)的Taylor展开式在整个复平面是收敛的.由sin(z)在z=0处的Taylor展开式可以看出:z=0是sin(z)的一阶的零点.z=kPi的情况只要

复变函数求积分∮_(|z|=2)▒e^(1/z^2 )dz

收敛域0<|z|<+∞由于展开式再收敛羽内一致收敛,积分和求和可交换在进一步利用重要积分注意到展开式没有-1次幂项,所以每项积分值为0所以总的积分值为0