如图,在△abc中,bp平分角ABC,cp平分角acb,角a=76度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:59:45
证明:在AB上截取AE=ADAP平分∠DAB,所以∠DAP=∠EAP在△ADP和△AEP中,AD=AE,∠DAP=∠EAP,AP=AP所以△ADP≌△AEP,∠DPA=∠EPABP平分∠ABC,所以∠
全部正确思路:1)证明略2)过P做MN垂直AD,交AD,BC于M、N,PQ垂直AB显然:PN=PQ=PM,P为MN中点3)由2),因为AD平行BC显然:P为CD中点,PC=PD4)BP延长线交AD于K
解;因为三角形的外角等于不相邻的两个内角之和,所以设∠ACB的外角为∠ACE,∠ACE=∠ABC+∠BAC.又因为BD平分∠ABC,所以∠DBC=1/2∠ABC同理:∠ACD=1/2∠ACE=1/2(
在△ABC中,∵∠ABC=80°,BP平分∠ABC,∴∠CBP=12∠ABC=40°.∵∠ACB=50°,CP平分∠ACB,∴∠BCP=12∠ACB=25°.在△BCP中∠BPC=180°-(∠CBP
证明:过点P分别过点P作PD⊥AM于D,PE⊥BC于E,PF⊥AN于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(到角两边距离相等的点
因为角EAD=角CAD,(AD平分角BAC)又:角EDA=角DAC,(DE//AC)所以,角EDA=角DAE又:EF垂直于AD所以,EF是AD的垂直平分线,∴FD=FA,(垂直平分线上的点到线段两个端
证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A
因为AB=AC,AD垂直BC,所以D为BC中点,又因为BC=6,所以DC=3,又AC=5,由勾股定理,AD=4,所三角形ABC的面积为3*4=12.而P实际为三角形ABC的内心,即为角平分线的交点,P
AB=AD+BC做PE垂直AB于E则三角形APE≌三角形APD(直角、平分线、公共边)则AD=AE同理BE=BC故AB=AE+BE=AD+BC
在BC延长线上取点E∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CP平分∠ACE∴∠PCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB
∵BP平分∠ABC,∴∠DBP=∠CBP.∵DE∥BC,∴∠CBP=∠DPB.∴∠DPB=∠DBP.即DP=DB.同理可得PE=CE.∴DE=BD+CE,即DE-DB=EC.
在AB上取一点E,使得AE=AC,连接EP,那么在三角形AEP和三角形ACP中AP=AC角EAP=角CAPAP=AP三角形AEP和三角形ACP全等.角ACP=角AEP为锐角,那么角BEP为钝角,所以B
∵在△ABC中,∠A=50°,∴∠ABC+∠ACB=180°-50°=130°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12×130°=65°,∴∠BP
∵BP平分角ABC,CP平分角ACB,∴∠ABP=1/2∠ABC=40°,∠ACP=1/2∠ACB=25°,延长BP交AC于D,则∠BPC=∠PDC+∠ACP=(∠A+∠ABP)+∠ACP=∠A+40
证明:过点P分别作AM、BC、AN的垂线PE、PF、PD,E、F、D为垂足,∵CP是∠MCB的平分线,∴PE=PD.同理:PF=PD.∴PE=PF.∴点P在∠BAC的平分线上.
已知BP,CP为角平分线,则∠pBC=25度,∠PCB=40度,根据三角形内角和等于180度,所求角为115度
根据题意,∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵BP平分∠ABC,CP平分∠ABC的外角∠ACD,∴∠ABC=2∠PBC,∠ACD=2∠PCD,∴∠A+∠ABC=2(∠P+∠PBC),
过E分别作BA,BC,AC的垂线,交BA,BC,AC于M,N,P,∵BE平分∠ABC,∴△BEM≌△BEN(A,A,S)∴EM=EN.同理:EP=EN,∴EM=EP,即△AEM≌△AEP(H,L)∴∠
∵∠A=50∴∠ABC+∠ACB=180-∠A=180-50=130∵BP平分∠ABC,CP平分∠ACB∴∠PBC=∠ABC/2,∠PCB=∠ACB/2∴∠PBC+∠PCB=∠ABC/2+∠ACB/2