如图,如图,在△abc中,ad平分∠abc,点d是bc中点,df垂直ac于点f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:16:48
如图,如图,在△abc中,ad平分∠abc,点d是bc中点,df垂直ac于点f
如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在AD上

(1)证明:∵AB=AC且AD⊥BC∴AD平分∠BAC即∠BAD=∠CAD证明△ABE全等于△ACE(利用AB=AC,∠BAD=∠CAD,AE=AE)∴BE=CE(2)证明:∵BF⊥AC且∠BAC=4

如图,在△ABC中,AD平分∠BAC,CE⊥AB于E(AE

∵CD=DF∴∠DCF=∠DFC∵∠DFC=∠AFE∴∠DCF=∠AFE∵CE⊥AB∴∠AFE+∠BAD=90°∠EBC+∠DCF=90°∴∠BAD=∠EBC∴BD=AD

如图,在△ABC中,AD平分∠BAC,CD⊥AD于D,求证∠ACD>∠B

延长CD交AB于点E∵AD平分∠BAC∴∠BAD=∠CAD∵CD⊥AD∴∠ADE=ADC∵AD=AD∴⊿ADE≌⊿ADC﹙ASA﹚∴∠AED=∠ACD∵∠AED是△BCE的外角∴∠AED>∠B即∠AC

如图,在△ABC中,AD平分∠BAC,CE⊥AD于E.

证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A

如图,在△ABC中,AD垂直平分BC,H是AD上的一点,连接BH,CH

(1)AD是BC的中垂线所以AB=AC,HB=HC,所以AB=AC,BD=CD,AD=AD三角形ABD全等于三角形ACD所以角BAD=角CAD所以评分啊(2)角BAD,CAD,ABH,ACH,HBD,

如图,在△ABC中,O是高AD和BE的交点.

(1)∵O是高AD和BE的交点,∴∠OEC=∠ODC=90°,∴∠C+∠DOE=180°;∵∠DOE+∠AOE=180°,∴∠AOE=∠C;(2)由(1)可知,如果一个角的两边分别垂直于另一个角的两边

如图,在△ABC中,AD平分

因为角EAD=角CAD,(AD平分角BAC)又:角EDA=角DAC,(DE//AC)所以,角EDA=角DAE又:EF垂直于AD所以,EF是AD的垂直平分线,∴FD=FA,(垂直平分线上的点到线段两个端

如图,在△ABC中,AD是BC边上的中线,求证:2AD

以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE

如图,在△ABC中,AB=AC,AD平分∠BAC.

证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.

、如图在三角形ABC中,AD是中线,

延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13

如图,在△ABC中,AD是角平分线,E是AD上的一点,且CE=CD,

证明:(1)∵AD是角平分线,∴∠BAD=∠DAC,∵CD=EC,∴∠CDE=∠CED,∴∠B+∠BAD=∠ACE+∠CAE,∴∠B=∠ACE;(2)∵∠B=∠ACE,∠BAD=∠DAC,∴△ABD∽

如图,在△ABC中,AD为角平分线,CE⊥AD,F为BC中点.

证明:如图,延长CE交AB于G,∵AD为角平分线,∴∠EAG=∠EAC,∵CE⊥AD,∴∠AEG=∠AEC=90°,在△AGE和△ACE中,∠EAG=∠EACAE=AE∠AEG=∠AEC=90°,∴△

如图,在三角形ABC中,AD平分角BAC,AD的垂直平分线交……

∠CAE=∠B理由如下:∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵∠EAD=∠EAC+∠CAD,∠EDA=∠B+∠BAD又∵∠BAD=∠CAD∴∠CAE=∠B

如图,在三角形abc中,ad是高

(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD

如图,在△ABC中,AD为∠BAC的

∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F∴DE=DF∵△ABC面积是28cm2,AB=20cm,AC=8cm∴S△ABC=1/2AB•DE+1/2ACR

已知,如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF交bc

证:∵AD平分∠BAC,∴∠BAD=∠DAC又∵EF垂直平分AD,∴AF=DF,∴∠DAF=∠ADF∵∠BAF=∠BAD+∠DAF,∠ACF=∠DAC+∠ADF∴∠BAF=∠ACF.这很简单啊.

如图,在△ABC中,AB=AC,AD是高,E在AD上,求证:

证明:(1)∵在△ABC中,AB=AC,AD是高,∴BD=CD(等腰三角形底边上高与底边上的中线重合);(2)∵AD是高,∴∠EDB=∠EDC,在△BDE和△CDE中,ED=ED∠EDB=∠EDCBD

:如图,在△ABC中,AD⊥BC,AE平分∠BAC.

(1)因为角ABC=30°,角ACB=60°,所以角BAC=90°,又因为AE平分角BAC,所以角EAC=45°,AD⊥BC,所以角ADC=90°,角DAC=30°,那么角DAE=45°-30°=15