如图,小正方形ABCD的边长是4厘米

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:58:57
如图,小正方形ABCD的边长是4厘米
如图,四边形ABCD是3×3网格中的格的正方形,网格中的每个小正方形的边长均为1.⑴求正方形ABCD的面积;

图在哪里?再问: 再答:面积=5*5-4*4*1/2=17边长=根号下(1^2+4^2)=根号下17,所以是无理数

如图已知四边形ABCD是边长为2的正方形以对角线BD为边

① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2   

如图,已知正方形ABCD的边长是8厘米,求阴影部分面积

连结AD,扇形ABD的面积为(π*8^2)/4=16π平方厘米≈50.27平方厘米三角形ABD的面积为(8^2)/2=32平方厘米于是阴影部分面积≈2*(50.27-32)=2*18.27=36.54

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如图,大小两个正方形,小正方形的边长是10cm,求阴影部分面积

如果你的图是大小两个正方形靠在一起,阴影部分是三角形,且三角形的三个顶点都是正方形的顶点的话.那么阴影部分面积=10×10÷2=50(平方厘米)

如图,大正方形的边长是10厘米,小正方形的边长是5厘米,求阴影部分面积

我是初一的,希望能帮上忙.首先,算出小正方形的面积:5×5=25然后,算出大正方形一半的那个大三角形:10×10÷2=50接着,算出一边是大正方形的边长加小正方形的边长,一边是大正方形的边长减小正方形

如图,已知大正方形的边长是12厘米,求中间小正方形的面积.

按上图做好辅助线后可知,面积关系如下红色三角形=绿色三角形蓝色三角形=黑色三角形故小正方形=4个蓝色三角形=0.5(4个蓝色+4个黑色)=0.5(中正方形)=0.5(4个绿三角形)=0.5*0.5(4

如图,已知正方形ABCD的边长是8分米,求阴影部分面积.

连AD,阴影面积=2(扇形CAD面积-△ACD面积)=2(16π-32)=32π-64

如图,两个边长都为1的正方形,正方形EFGO的顶点O是正方形ABCD的中心

1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1

如图:E是边长为1的正方形ABCD的对角线BD上一点

把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,

如图,大正方形ABCD的边长5cm,小正方形ECFG的边长是3cm,求阴影部分的面积

阴影面积=大长方形-三个三角形=40-25/2-24/2-6/2=12.5平方厘米.

如图,正方形ABCD的边长是一厘米.求阴影部分的周长

最下面的点应该是F吧阴影部分内边周长为AB+BE+CE+CD+DA=1+1+2πX0.25+1+1=0.5π+4阴影部分外边周长为EF+FG+GH+HK+EK=4πX0.25+6πX0.25+8πX0

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD

(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相

如图,正方形ABCD的边长为4,正方形OEFG的边长为6,O是正方形ABCD的对角线交点,则图中阴影部分面积为4

晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?

如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A'B'C'D'是边长为1的正方形,

 如图,⑴  E.F是CD,DA的中点,A1D⊥D1D  FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1

如图,EFGH分别是正方形ABCD各边的中点,要使中间阴影部分的小正方形面积为1,则大正方形的边长应该是?

如图易知af平行于hc(bg上的两点分别设为m和n)又:f是bc中点由平行线分线段成比例定理得:bm=mn=1由于三角形abf相似于三角形bmf因此若设bf=x可得bm等于5分之2倍根号5所以5分之2

如图 每个小正方形的边长为1,求四边形ABCD的面积

设大方框左下角的那个点为E大方框右下角的点为F可以轻易地看出RT△AEB长直角边与短直角边的比为2:1RT△BFC长直角边与短直角边的比为2:1所以RT△AEB相似于RT△BFC所以∠ABE+∠CBF