如图,连接原点O和抛物线y=2x^2上的动点M,延长OM到点P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:14:19
如图,连接原点O和抛物线y=2x^2上的动点M,延长OM到点P
如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴X=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,

看样子,此题应是初三的题.根据“线段垂直平分线的点到线段两端距离相等”,线段BE的垂直平分线与二次函数的交点就是符合题意的点,有两个.设直线BE:y=-2x-1与x轴交于F点,则F(-1/2,0)作直

如图,已知抛物线y=( sin45°)x2-2x+n过原点O和x轴上另一点C,它的顶点为B,四边形AOBC是菱形,动点P

题有点费时间,不是难题,烦题(1)、y=(√2/2)x^2-2x+n,过原点,n=0;代入化简得:0=x(x√2/2-2),坐标:O(0,0),C(2√2,0)y=(√2/2)(x-√2)^2-√2;

如图,点o为坐标原点,直线l经过抛物线C:y²=4x的焦点F.

二者相切抛物线:y^2=4x因此,焦点为F=(1,0)设A=(x0,y0)那么,圆的半径r=√[(x0-1)^2+(y0)^2]=√[(x0-1)^2+4x0]=(x0+1)因此,B=(1-r,0)=

连接原点O和抛物线y=1/2·x^2上的动点M,延长OM到P点,使|OM|=|MP|,求点P的轨迹方程,说明它是什么曲线

P(x,y)|OM|=|MP|,xM=xP/2=x/2,yM=yP/2=y/2M抛物线的动点,yM=1/2·(xM)^2(y/2)=(1/2)*(x/2)^2点P的轨迹方程抛物线:y=(1/4)*x^

如图,已知抛物线y=ax^2+bx+c经过原点O,它的顶点坐标为(5,25/4),在抛物线内作矩形ABCD,使顶点C,D

说明:分数不好打,一律打成小数!(1)可用抛物线的顶点坐标式求:设y=a(x-5)^2+25/4将(0,0)点代入可求出为y=-0.25x^2+6.25(2)由矩形的性质可知,A、B都在x轴上,说明D

如图,已知过点A的直线AB;y=-2x+4和直线AC:y=½x-1,过原点O的抛物线的顶点为B(1,2) (

(1)y=x/2-1x=0,y=-1,C(0,-1)A(2,0)CA斜率k=(-1-0)/(0-2)=1/2AB斜率k'=(2-0)/(1-2)=-1kk'=-1,∠CAB=90˚(2)抛物

抛物线y=ax^2+bx(a>0)经过原点O和点A(2,0)

(1)根据图示,由抛物线的对称性可知,抛物线的对称轴与x轴的交点坐标(1,0);(2)抛物线的对称轴是直线x=1.根据图示知,当x<1时,y随x的增大而减小,所以,当x1<x2<1时,y1>y2;

如图,经过点A(0,-4)的抛物线y=1/2x²+bx+c与x轴相交于点B(-2,0)和C,O为坐标原点 若点

  将A(0,-4)、B(-2,0)代入抛物线y=1/2x^2+bx+c中,得: 0+c=-4 2-2b+c=0  ,解得: b=

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x+1

二次函数解析式:y=-1/4x^2+xB(-2,-3);D(0,1)对称轴:x=2(3)抛物线的对称轴上存在这样的点P,使得△PBE是以PE为腰的等腰三角形设点P(2,a);B(-2,-3);D(0,

如图,已知抛物线y=ax^2+bx+c经过原点O,它的顶点坐标为(5,25/4),在抛物线内作矩形ABCD使顶点C,D落

说明:分数不好打,一律打成小数!(1)可用抛物线的顶点坐标式求:设y=a(x-5)^2+25/4将(0,0)点代入可求出为y=-0.25x^2+6.25(2)由矩形的性质可知,A、B都在x轴上,说明D

如图,已知,抛物线y=ax^2+bx+c经过原点O(0,0)和A(1,3)、B(-1,5)两点.1、求抛物线解析式,

(1)∵抛物线过O(0,0),A(1,-3),B(-1,5)三点,解得a=1b=-4c=0;∴抛物线的解析式为y=x2-4x;(2)抛物线y=x2-4x与x轴的另一个交点坐标为C(4,0),连接EM;

(2009•江苏模拟)已知,如图,抛物线经过原点O和点B(m,-3),它的对称轴x=-2与x轴交于点A,直线y=-2x+

(1)∵点B(m,-3)在直线y=-2x+1上,∴-3=-2×m+1,∴m=2,∴B(2,-3)∵抛物线经过原点O和点M,对称轴为x=-2,∴点M坐标为(-4,0)设所求的抛物线对应函数关系式为y=a

如图,已知抛物线经过原点O和x轴上另一点A,它的堆成轴为x=2,直线y=-2x-1经过抛物线上一点B(-2.m),且与y

(1)∵点B(-2,m)在直线y=-2x-1上,∴m=-2×(-2)-1=3.∴B(-2,3)∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0).设所求的抛物线对应函数关系式为y=a(

如图,抛物线Y=x^2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移,使它经过原点

 (1)因为抛物线方程为:y=X^2+4X 配方得:y=(X+2)^2-4, 所以抛物线的顶点坐标为(-2,-4). 即A的坐标为(-2,-4) (2

如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点,顶点为P...

过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=1/2(x+3)^2+h,将(-6,0)代入得出:0=1/2(-6+3

如图,抛物线y=ax²+bx(a>0)经过原点O和点A(2,0) 1.求抛物线的对称轴.2.点

1,首先抛物线过原点又过点(2,0)所以对称轴即为x=12,又a>0故而抛物线开口向上故而对于x1<x2<1有y2<y13,由题意知C(3,2)A(2,0)故而所求函数即为y=2x-4要分数急用感激万

如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所在的直线沿y轴向上平移,使它经过原点

(1)抛物线y=x^2+4x=(x+2)^2-4与x轴分别相交于点B(-4,0)、O(0,0),它的顶点为A(-2,-4).(2)l:y=-2x,①P(-2/√5,-4/√5)时BP⊥OP,四边形BA