如图在正方形ABCD中AE=AD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:14:11
在正方形ABCD中∠ABE=∠ABO+∠2=90°∵AE⊥BF∴∠AOB=90°∴∠1+∠ABO=90°∴∠1=∠2(同角的余角相等)
先说几个角.令∠EAC=∠1,∠EDC=∠4,∠DCA=∠3,∠DEA=∠2,∠EFC=∠5,∠AEC=∠6,∠ECF=∠7.∵∠2+∠4=∠5,AE=AC∴∠3+∠7=∠6,180°-∠7-∠5=∠
∵四边形ABCD为正方形∴AB=CD=CB=AD,∠D=∠DAB=90°又因为CE=DF所以CD-CE=AD-DF即DE=AF在△EDA与△FAB中DE=AF∠D=∠DABAD=BA所以△EDA≌△F
证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB-∠E
设BP与AE的交点为O∵AB=BC,∠ABE=∠CBE=45°,BE=BE∴△ABE≌△CBE∴∠BAE=∠BCE∵P是AD中点易证:△ABP≌△DCP∴∠ABP=∠DCP∵∠BCE+∠DCP=90°
①正确∠EAB=90°-∠BAP=∠DAPAE=AP且AB=AD所以△APD≌△AEB③正确△APD≌△AEB∠AEB=∠APD=180°-∠APE=135°∠BED=∠AEB-∠AEP=135°-4
(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4
证明:∵正方形ABCD∴AB=AD,∠BAD=∠ABC=90∴∠BAF+∠AFB=90∵AE=BF∴△ABF≌△DAE(SAS)∴∠DEA=∠AFB∴∠BAF+∠DEA=90∴∠AGE=180-(∠B
连接CF,设AF=1则DF=3,AE=BE=2,正方形ABCF的边长为4CE^2=BE^2+BC^2=20EF^2=AF^2+AE^2=5CF^2=DF^2+CD^2=25所以CF^2=CE^2+EF
已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CE⊥EF(原结论不对)证明:设AF=x,则AD=CD=BC=AB=4x,FD=3x,AE=EB=2x. 以下有两种证明方法.证明方
由题意,∠DAF=∠CAE=∠ECF,设正方形边长为1延长AE与BC交于G.则CG=AC=根号2DF:CF=AD:CG=1:根号2DF=根号2-1根据勾股定理AF=根号(4-2根号2),CE=根号[(
因为FC平行于AB所以可求△FCE相似于△ABE所以EC/EB=FC/AB所以EC/FC=EB/AB因为AC为正方形对角线,所以AC=根号2*AB因为CE=AC=根号2*AB所以EB=(根号2+1)A
∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A
解∶由题意可知ΔADE与ΔDFE和ΔBFC都是直角三角形,且AB=BC=CD=AD=4,AE=DE=2,DF=1,∴CF=DC-DF=3∵在RtΔABE中BE²=AB²+AE
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
链接EN,设EN=x,则EN=AN=x,BN=12-x因为三角形ENB是直角三角形,所以5^2+(12-x)^2=x^2x=169/24由于AE是直角三角形ABE斜边,算出长度等于13,所以ON(O是
∵ABCD是正方形,AC是对角线∴∠BCA=45°作EF垂直AC ∵AE 是∠BAC角平分线∴∠BAE=∠FAE∵AB⊥BC,ET⊥AC,AE=AE∴△ABE全等于△AFE∴BE=
(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC
延长BC至H,使得CH=AE,连接DH在三角形DCH和三角形DAE中,可以证明这两三角形全等,则:∠HDC=∠ADE----------------------------(1)DE=DH------