如图已知点p是三角形abc重心过p作bc的平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:58:35
如图已知点p是三角形abc重心过p作bc的平分线
已知三角形ABC P是平面ABC上一点,求证P到三角形ABC三顶点距离平方之和取得最小值是,点P恰好为三角形ABC重心

把三角形ABC置于直角坐标系中,设三角形ABC三顶点坐标为(x1,y1),(x2,y2),(x3,y3),点P坐标(x,y),P到三角形ABC三顶点距离平方之和=(x-x1)²+(y-y1)

已知点O是三角形ABC的重心,求向量OA+向量OB+向量OC=?

点O是三角形ABC的重心 ==> 中线AD、BE、CF过点O,且 向量AO=2向量OD,向量BO=2向量OE,向量CO=2向量OF.延长AD到G使得 向量

已知点G是三角形ABC的重心,则向量GA+向量GB+向量GC=

=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

在三角形ABC中,AE和BF是中线且交于点P,已知三角形BEP的面积为5,求三角形ABC的面积.如图::

中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点

如图,点O是三角形ABC的重心,请问三角形AOB,三角形BOC,三角形AOC的面积有什么关系?说明理由

S△AOB=S△BOC=S△AOC,理由如下:分别延长AO、BO、CO,交BC、AC、AB于D、E、F,∵O是△ABC的重心,∴AD、BE、CF是△ABC的中线,∴S△ABD=S△ABE=1/2S△A

如图,已知P是三角形ABC内任一点,求证:AB+AC大于BP+PC

延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.

四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC

如图,三角形A'B'C'是由三角形ABC平移后得到的,已知三角形ABC中任一点P(x0,y0)

分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应

已知空间四边形ABCD,P,Q分别是三角形ABC和三角形BCD的重心,求证PQ平行平面ACD如题

延长BP交AC于E,延长BQ交CD于F由重心特性知:BP:BE=BQ:BF=2:3,所以PQ//EF又因为EF在面ACD内,PQ不在面ACD内,所以PQ//面ACD

如图,G是三角形ABC的重心,P,Q分别在AB,AC上,已知向量AP=3/4向量AB,直线PQ过点G,设向量AQ=λ向量

G为三三角形的重心,则AG=(1/3)AB+(1/3)AC.①.由于P、G、Q三点一直线,所以GP=mGQ,而GP=AP-AG=(3/4)AB-AG,GQ=AQ-AG=λAC-AG,代入,有:(3/4

如图,P是三角形ABC所在平面外的一点,D,E,F分别是三角形PBC,PAC,PAB的重心,证:面DEF//ABC

利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH

(初三数学)已知如图,点p是三角形abc的重心,过点p作ac的平分线,分别交ab,bc与点

连接BP并延长交AC于G由重心性质得,BP:PG=2:1因为DE//AC所以BD:DA=BP:PG=2:1所以BD:BA=2:3,AD:AB=1:3因为DE//AC,DF//BC所以△BDE∽△BAC

如图,在三角形ABC中,BD、CE分别是边AC、AB上的中线,点M是三角形BEC重心,点N是三角形BCD重心,则MN:B

如图,连接ED.由题可知,ED是△ABC的中位线∴ED=1/2BC          .①∵M,N为

如图,已知点O是正方形ABCD的重心

这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相

如图,点G是三角形ABC的重心且AD垂直BE已知BC=3 AC=4求AB的长

AG^2+EG^2=AE^2=2^2=4BG^2+DG^2=BD^2=1.5^2=2.25根据三角形重心的性质,有AG=2DG,BG=2EG,代入上面两个式子,得4DG^2+EG^2=44EG^2+D

已知,如图,点G是三角形ABC的重心,GE平行于AB,GF平行于AC.

因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=

已知三角形abc,(1)如图,若点P是∠ABC和外角∠ACE的角平分线交点,求证:∠p=2/1∠A

∵∠1=∠2+∠3,∴∠2=∠1-∠3,∠A=∠ACE-∠ABC,∵点P是∠ABC和外角∠ACE的角平分线交点,∴∠A=2∠1-2∠3=2(∠1-∠3)=2∠2,∴∠p=1/2∠A

如图,已知P为△ABC外一点,点M、N分别为△PAB、△PBC的重心. (1)求证:MN∥平面ABC;

连接并延长PM,PN交AC,BC分别于D,E重心:三角形中线的交点.性质:重心为中线的三分点.所以MD=1/3PD.NE=1/3PE三角形PDE中△PMN∽△PDE故MN∥DE且DE在面ABC中MN在