如图正方形ABCD中,点E,F分别在BC,CD上,EAF=90

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:02:25
如图正方形ABCD中,点E,F分别在BC,CD上,EAF=90
如图,正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直于EF

1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度

如图,在边长为1的正方形ABCD中,点E在边BC上(与端点不重合),点F在射线DC上.

(1)y=-1/2x²+x(2)①若∠AEF=90°,∵△AEF∽△ECF,∴∠FAE=∠FEC=∠EAB,∴△ECF∽△ABE,∴AE/EC=EF/CF,EF/CF=AE/BE,∴AE/E

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如图,在正方形abcd中,e是对角线ac垂直一点,ef垂直bc于点f,eg垂直cd于点g.

1是因为正方形abcd为正方形ac对角线所以ac平分角bcd所以角acb等于角acd45度因为e在ac上egef分别垂直于bcdc角efcegc都为90度三角形efcegc为等腰三角形四边形efcg为

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.

很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE垂直于EF于点E

(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9

如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,边长为2,求正方形面积

显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

已知:如图,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF.

(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4

​如图,在正方形ABCD中,对角线AC和BD相交于点O ,点E,F,G,H分别是AO,BO,CO ,DC的中

只要是正方形都是相似的,所以只要证EFGH是正方形首先E、F都是中点,可得∠BAE=∠FEO,∠ABF=∠EFO同理,可得图中类似角都相等由等式性质可得∠HEF=∠DAB同理四个角都是直角下面要证四条

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

如图,正方形ABCD中,E是AD的中点,BD与CE交于点F 如图,正方形ABCD中,E是AD的中点,BD与CE交于点F,

设AF与BE相交于M,DA=DC,∠ADF=∠CDF=45°,FD=FD==>△DAF≌△DCF==>∠DAF=∠DCFAE=ED,∠BAE=∠CDE=90°,AB=DC==>△ABE≌△DCE==>

如图,正方形ABCD中,E为AD中点,BD与CE交于点F,求证AF垂直BE

设BE、AF交于O在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),∴△AFD和△BFD全等,则∠DAF=∠DCF在△AEB和△DEC中,AE=DE(

 已知:如图,正方形ABCD,AC、BD相交于点O,E、F分别

按题意,可知OM应为CE的一半.如果假设M无限接近于B点,则E也将无限接近于B点,此时OM趋于CE/√2,③并不成立所以你确定题目或答案都没弄错?要是你确定题目没错,那么要敢于质疑参考答案的正确性.因

如图,正方形ABCD中,E是对角线BD上一点,过点E作EF⊥CE交AB于点F.

ABCD为正方形,所以角B=90°,角DBC=45°.又因为EF⊥CE,所以A,B,C,D四点共圆,所以角EFC=角DBC=45°,所以△CEF为等边直角三角形,EF=EC/根号2而FC=根号(BC&

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形

如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A

已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.

(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC