已知:如图,在正方形ABCD中,E为CB延长线上一点,F在AD边上,且BE=DF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:34:35
已知:如图,在正方形ABCD中,E为CB延长线上一点,F在AD边上,且BE=DF
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O

因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG

已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB

好评给我把再答:再问:答案拿来再答:发了再问:采纳了

已知:如图,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF.

(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4

如图,已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CF⊥EF

已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CE⊥EF(原结论不对)证明:设AF=x,则AD=CD=BC=AB=4x,FD=3x,AE=EB=2x. 以下有两种证明方法.证明方

如图,已知正方形ABCD和线段a.请你在正方形ABCD中画出裁剪线并将它拼接成两个小正方形

如图,首先熟悉勾股定理的几何证明.再延其思路找出图形裁剪线.

已知:如图,在梯形ABCD中

因为AD∥BC,∠A=90°,所以梯形是直角梯形,∠B=90°;∠D=180°-∠BCD=120°;又DF∥AB,所以DF⊥DA,DF⊥BC;所以∠FDE=∠D-90°=30°;如下图,延长DF交BC

如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

如图,矩形纸片ABCD中,已知AB=5,AD=4,四边形MNEF是在矩形纸片ABCD中剪裁出的一个正方形MNEF.

(1)如图,过点E作PQ垂直于AB,分别交AB、CD于点P、Q,∵∠QFE+∠QEF=∠NEP+∠QEF=90°∴QFE=∠NEP在△EPN和△EQF中,∠FQE=∠EPN∠QFE=∠PENEF=NE

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

已知 如图 在正方形ABCD中,点E在对角线AC上,求证BE=DE

因为是正方形所以∠DCA=∠BCA=45°,BC=DC在三角形DCE和三角形BCE中,CE是公共边所以ΔDCE≌ΔBCE(SAS)所以BE=DE

如图,在正方形ABCD中,以A为顶点

图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB

如图,已知在正方形ABCD中,BE=5,MN为AE的中垂线,正方形ABCD的边长为12,求MN的长

链接EN,设EN=x,则EN=AN=x,BN=12-x因为三角形ENB是直角三角形,所以5^2+(12-x)^2=x^2x=169/24由于AE是直角三角形ABE斜边,算出长度等于13,所以ON(O是

已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.

(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG

如图,已知在正方形ABCD中,∠EDF=45°,求证:EF=AE+CF

延长BC至H,使得CH=AE,连接DH在三角形DCH和三角形DAE中,可以证明这两三角形全等,则:∠HDC=∠ADE----------------------------(1)DE=DH------