已知a b=2,若b大于等于3,则a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:45:24
∵a≥0-ab^3≥0∴b≤0于是√[-ab^3]=-b√(-ab)
(a+b)/2-√ab=(a+b-2√ab)/2=(√a-√b)^2/2≥0所以,(a+b)/2≥√a
ab=2a=2/b-3≤b≤-1-1≤1/b≤-1/3-2≤2/b≤-2/3-2≤a≤-2/3
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=1/2*(a2+b2+b2+c2+c2+a2)+ab+2bc+2ca]>=1/2*(2ab+2bc+2ca)+2ab+2bc+2ca=3ab
什么垃圾题目!a都小于等于零了ab肯定小于等于零啊根号下ab只能为零了.用假设假设b=0那带进去a>=0与题意不符!假设a=0b>=0符合所以b/2>=0恒成立~
因为:(根号a+根号b)的平房=a+b+2根号ab又因为:a、b均为正数所以:(根号a+根号b)的平房=a+b+2根号ab>=0又因为a+b=m待入移项所以得结果啦~
(a^3+b^3+b/a+a/b)/4>=[(a^3)*(b^3)*(b/a)*(a/b)]的四次方根=1所以a^3+b^3+b/a+a/b>=4,等号当且仅当a=b=1时成立.
∵1/a+2/b=1,又a>0、b>0,∴1/a+2/b≧2√[(1/a)(2/b)],∴1≧2√[2/(ab)],∴√(ab)≧2√2,∴ab≧8.∴ab的最小值是8.
a=b=c=4带进去就不对
a>0,b>0平方大于等于0(√a-√b)²≥0a-2√ab+b≥0a+b≥2√ab(a+b)/2≥√a
(a-b)^2>=0a^2+b^2-2ab>=0a^2+b^2>=2a
证明:∵a、b均为实数,∴(a-b)²≥0a²+b²-2ab≥0a²+b²≥2ab证毕!
a²+b²+c²+4-ab-3b-2c=(a²-ab+¼b²)+(¾b²-3b)+(c²-2c+1)-1+4=
a²+b²+3=a²/2+b²/2+a²/2+b²/2+3≥a²/4+b²/4+a²/4+b²/4+
(a-1)²+(b-1)²≥0所以a²+b²-2a-2b+2≥0即a²+b²≥2a+2b-2
晕倒,这要是想求出准确数字,肯定还有其他条件追问:回答:根号2/2追问:.回答:后面直接平方,再开方,ok
没人给你做啊,看在老乡份上我给你做吧,不过要一个一个题打,别着急.1.原式=a+b+1/根号ab〉=2根号下((a+b)/根号ab)〉=2倍跟号2.注意这两步取等号的条件.2.由题意,将(1-a)(1
已知集合A={x|3≤X≤7},B={X|2
假设a=b=2,满足题目条件a>0,b>0,则a^3+b^2=8+4=12;a^2b+ab^2=8+8=16;所以a^3+b^2<a^2b+ab^2.所以,你的题目有问题.
f(x)=|2x+b|-3