已知an为等差,bn为等比 bn>0,a1=b1=01 a2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:03:58
n≥2时,Sn=4a(n-1)+2,与S(n+1)=4an+2相减,得:a(n+1)=4an-4a(n-1),即:a(n+1)-2an=2[an-a(n-1)],则:bn=2b(n-1),其中n≥2.
∵an是Sn与2的等差中项∴2an=Sn+2(*)令n=1,得2a1=S1+2=a1+2∴a1=2由(*)得:2a(n+1)=S(n+1)+2两式相减,得:2a(n+1)-2an=a(n+1)即a(n
这类题目的思路都很唯一给出的题目一般是an+1=f(n,an),(即一种对应关系)解决方法就是将式子转化成Cn+1=p(Cn),(其中Cn+1与an+1有联系,Cn与an有关p(x)是函数,但是能求出
∵{An}是等差数列∴An-A(n-1)=d(d为公差)∵Bn=kAn+m∴B(n-1)=kA(n-1)+m∴Bn-B(n-1)=kAn+m-[kA(n-1)+m]=k[An-A(n-1)]=kd这个
A(n+1)=2An+KA(n)=2A(n-1)+KA(n+1)-An=2[An-A(n-1)]Bn=A(n+1)-AnBn-1=An-A(n-1)Bn=2B(n-1){Bn}为等比数列
sn=2n^2-n,bn=sn/(n+p)=(2n^2-n)/(n+p)b1=1/(1+p),b2=6/(2+p),b3=15/(3+p).bn是等差数列,则b1+b3=2b2,即1/(1+p)+15
1)∵a2=b2∴1+d=1×q∵a4=b4∴1+3d=1×q^3组合成方程组后把d=q-1带入1+3d=q^3q^3-3q+2=0q^3-3q+3-1=0q^3-1-3(q-1)=0(q-1)(q^
我的思路:下标用[]表示*an是等差bn是等比那麼(c1/b1)+(c2/b2)+.+(cn/bn)=a[n+1]=2n然后(c1/b1)+(c2/b2)+.+(cn/bn)+(c[n+1]/b[n+
a(n+1)-an=常数可证an为等差函数;a(n+1)/an=常数可证an为等比函数;
怎么会有相同的题目,刚刚答完那边那个75首先a1=5,b2=5,从这个开始{an}公差为3,{bn}公差为4,公倍数为12可以发现,对于{an}来讲每12/3=4个会有一个出现在{bn}中对于{bn}
a(n)=3^(n-1)-2a(n-1)a(n)/3^n=(1/3)-(2/3)a(n-1)/3^(n-1)a(n)/3^n-1/5=-(2/3)[a(n-1)/3^(n-1)-1/5]b(n)=-(
这道题与你给出的题基本一致,可供参考:数列的前n项和记为Sn,a1=1,a(n+1)=2S(n+1)(n≥1).(1)求数列{an}的通项公式;(2)设等差数列{bn}的各项为正,其前n项和为Tn,且
(1)这道题很基础,希望楼主可以自己独立掌握Sn=2An-2^nS(n-1)=2A(n-1)-2^(n-1)两式相减得An-2A(n-1)=2^(n-1)等式两边同时除以2^(n-1)得An/[2^(
(1)an是Sn与2的等差中项即a1=2sn=2an-2所以s(n-1)=2a(n-1)-2an=sn-s(n-1)=2a(n-1)所以an为等比数列公比为2首项为2则an=2^n而点P(bn,bn+
an是n与Sn的等差中项,即:an-n=Sn-an,亦即:2an=n+Sn令n=1,代入得a1=1当n≥2时:2an=n+Sn;2a(n-1)=(n-1)+S(n-1)二式相减:2an-2a(n-1)
证:设等比数列{an}公比为q,对于数列{bn},对数有意义,q>0an=a1×q^(n-1)n=1时,b1=log3(a1)=log3(81)=4n≥2时,bn=log3(an)=log3(a1×q
An,Bn,An+1成等差A1=1.B1=2所以A2=3又Bn,An+1,Bn+1成等比所以B2=9/2所以A3=6,B3=8A4=10,B4=25/2所以,An=n(n-1)/2,Bn=(n+1)^
1+b2+b3=log1/2(a1a2a3)=6,所以a1a2a3=(1/2)^6又an是等比数列,所以a1a3=(a2)²故(a2)³=(1/2)^6得a2=(1/2)²
已知等比数列an,首项为81,数列bn满足bn=log3an,其前n项和sn(1)证明:bn-b(n-1)=log(3)an-log(3)an-1=log(3)an/a(n-1)=log(3)q∵b1