A²=A,且A≠E则A是什么矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:08:58
因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n
由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=
求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)
A^2=2AA(A-2E)=0B不一定成立.这是刚学矩阵乘法时常犯的错误
(E-A)(E+A+A^2+...+A^k-1)=E+A+A^2+...+A^k-1-A-A^2-...-A^k-1-A^k=E所以E-A可逆,且其逆为E+A+A^2+...+A^k-1
可利用特征值如图得出答案是-12.经济数学团队帮你解答,请及时采纳.谢谢!
设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-
(1)由(A+E)(A-3E)=A²-2A-3E=(A²-2A-4E)+E=0+E=E有A+E与A-3E都可逆,且互为逆矩阵(2)由A^2+2A+3E=0,有A(A+2E)=-3E
因为A-E,A+E,A+3E均不可逆所以|A-E|=0,|A+E|=0,|A+3E|=0所以A有特征值1,-1,-3而A是3阶方阵,故1,-1,3是A的全部特征值所以|A|=1*(-1)*(-3)=3
lna>alnblna/lnb>a/b令0再问:谢谢会了
A可以为HE可以是Na
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
a的模其实是一个常数,所以乘上一个向量之后是一个向量;又a//e;所以就相等了
因为A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,所以A的特征值为1,-1,-3.从而A^2-2A+3E的特征值为2,6,18,进而|A^2-2A+3E|=2*6*18=216.再问:A^
根据特征值的意义以及性质,|A+2E|=0可得,有一特征值-2 (特征值的定义)|2A+E|=0 可得,有一特征值-1/2|3A–4E|=0 可得,有一特征值
thereporterinternCaiFuYangJiongsupertext/yesterdaytoQuanzhouQuangangfifthhighschool,firstday(3)class
左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.
/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因