求曲面 2 2 z =1- - x y 与 xoy 面所围成的立体体积.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:21:21
令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).
答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
由题意,曲面与柱面的交线在xoy面的投影为x2+y2=a2所设所截的曲面为∑,则∑在xoy面的投影为D={(x,y)|x2+y2≤a2}∴所求曲面的面积为A=∫∫dS=∫∫D1+zx2+zy2dxdy
因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配
z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-
∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1
令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-
很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!
http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-
借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们
注意,要将曲面方程写成F(x,y,z)=0的形式.曲面方程写为:F(x,y,z)=f(x,y)-z=0法向量:(Fx,Fy,Fz)=(fx,fy,-1)由于与z轴要成锐角,也就是第三个分量为正,因此将
面积A=∫∫dS,S的方程是x+y=1,即y=1-x,dS=√(1+1+0]dzdx=√2dzdx.求S在zOx面上的投影区域.x+y=1与zox面的交线是x=1.x+y=1与z=xy的交线在zOx面
xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0
求曲面(e^z)-z+xy=4的切平面及法线方程.设曲面方程F(x,y,z)=(e^z)-z+xy-4=0;点M(xo,yo,zo)是该曲面上的任意一点.∂F/∂x=y;
这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,
这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17
令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).
令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)