求曲面x y=2ax,x y=2az,z=0所围成的立体的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:57:41
求曲面x y=2ax,x y=2az,z=0所围成的立体的体积
已知x-xy=8,xy-y=-9,求x+y-2xy的值

x-xy=8(1)xy-y=-9(2)则有(1)-(2):X-XY-XY+Y=X+Y-2XY=8-(-9)=17

求曲面z∧2-xy=1上到原点最近的点

答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得

z=xy是什么曲面

可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就

已知xy^2=-2,求-xy(x^2y^5-xy^3-y)的值.

-xy(x^2y^5-xy^3-y)=-(xy^2)^3+(xy^2)^2+xy^2=-(-2)^3+4-2=8+4-2=10

求原点到曲面z^2=xy+x-y+4的最短距离,

因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配

求曲面z=x2+xy+zy2在(1,-1,2)处切平面方程.

z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-

求曲面e^x-z+xy=3在点(2,1,0)处的切平面及法线方程.

∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1

曲面z=xy在点(1,2,2)处的法向量n

令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-

求原点到曲面在z^2=xy+x-y+4的最短距离

很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!

求曲面xy+yz+zx=1上点(1,-2,-3)处的切平面方程

可用偏导数来求解.F(x,y,z)=xy+yz+zx-1,Fx(X,Y,Z)=y+z(对x求偏导数),Fy(X,Y,Z)=x+z(对y求偏导数),Fz(X,Y,Z)=y+x(对z求偏导数),在点(1,

当x=3,y=3分之1时,求代数出3xy-[2xy-2(xy-2分之3xy)+xy]+3xy的值

3xy-[2xy-2(xy-2分之3xy)+xy]+3xy=6xy-[2xy-2xy+3xy+xy)=6xy-4xy=2xy=2×3×3分之1=2

求曲面xy-z^2+1=0上离原点最近的点

xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0

设e^xy-xy^2=Siny,求dy/dx

你好!两边对x求导:e^(xy)*(y+xy')-y^2=y'cosy解得y'=(y^2-ye^(xy))/(xe^(xy)-cosy)

求dx/dy-3xy=xy^2的通解

dx/dy-3xy=xy^2dx/x=(y^2+3y)dy两边积分得:lnx=y^3/3+3y^2/2+c==>x=exp(y^3/3+3y^2/2+c)=Cexp(y^3/3+3y^2/2)C常数

已知(ax^2-2xy+y^2)-[-ax^2+bxy-(1/2)cy^2]=6x^2-5xy+cy^2恒成立,求a+b

(ax^2-2xy+y^2)-[-ax^2+bxy-(1/2)cy^2]=6x^2-5xy+cy^2ax²-2xy+y²+ax²-bxy+(1/2)cy²=6x

高数曲面和积分问题平面H:4x+8y+z=k是曲面S:z=9-x^2-4y^2的切平面求k计算曲面S与xy平面包围的部分

记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17

已知xy^2=-2 求-xy(x^2y^5-xy^3-y)

原式=-xy²(x²y^4-xy²-1)∵xy²=-2原式=2((-2)²-(-2)-1)=10

求通解,dy/dx-3xy=xy^2

dy/dx=xy²+3xydy/dx=x(y²+3y)∫1/[y(y+3)]dy=∫xdx(1/3)∫(3+y-y)/[y(y+3)]dy=∫xdx∫[1/y-1/(y+3)]dy

曲面sinz-z+xy=1在点(2,-1,0)出的法线方程

令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)