矩阵A^k=O证明(E-A)^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:57:00
矩阵A^k=O证明(E-A)^-1
矩阵A^2=A,证明:(A+E)^k=E+(2^k-1)A (k∈N).

因为AE=EA,即A与E可交换所以由二项式公式有(A+E)^k=∑(0

n阶矩阵A,A^k=0,证E-A可逆,用特征值法证明.

先证A的特征值只有0;反证法:假设A有一个特征值t不等于0;那么,根据特征向量的定义,存在X不等于0,AX=tX;又A^K=0则0=(A^k)X=A^(k-1)(tX)=tA^(k-1)X=……=(t

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵

经济数学团队为你解答.再问:证明A特征值全为零和证明下一步E+kA特征值为1有什么关系吗?再答:有关系。若a是A的特征值,则1+ka是E+kA的特征值。

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

设A为n阶实矩阵,证明:若A^k=E,则A相似于对角阵

可以用稍微初等一点的技术在复数域上上三角化总是可以的,并且特征值的次序可以任意指定那么就先上三角化到diag{A1,A2,...,Am}+N,每一块Ai都恰有一个特征值,且不同的块对应不同的特征值,N

设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A

由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1

设A为n阶矩阵,A≠O且存在正整数k≧2,使A∧k=O.求证E-A可逆且(E-A)-¹=E+A+A²

(E-A)(E+A+A^2+...+A^k-1)=E+A+A^2+...+A^k-1-A-A^2-...-A^k-1-A^k=E所以E-A可逆,且其逆为E+A+A^2+...+A^k-1

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵

A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵.

A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E

A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

A^2+A-4E=OA^2+A=4EA(A+E)=4EA(A+E)/4=E因此,A可逆,且A^-1=(A+E)/4A^2+A-4E=OA^2+A-2E=2E(A-E)(A+2E)=2E(A-E)(A+

设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆

(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-

设方阵A满足A^2-A-2E=O证明:A与E-A都可逆,并求他们的逆矩阵

再问:第三行等号左边那个E是1吧。?再答:是E再答:单位矩阵再答:再问:嗯嗯不过还是有点不明白A的逆矩阵和E-A的逆矩阵怎么求的。图上是全部的步骤了么?谢谢(^_^)再答:第三步只是把2除了过去,已经

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵.

因为A^m=O,即A为幂零矩阵,所以A的特征值只有0,从而对任意实数k,E+kA的特征值只能是1,|E+kA|等于其所有特征值的乘积,故不为0,所以E+kA为可逆矩阵.

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)

证明:因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-

矩阵A满足A^2+5A-4E=O,证明A-3E可逆,并求其逆.

(A-3E)(A+8E)+20E=A^2+5A-4E=O所以(A-3E)(A+8E)=-20E所以|A-3E||A+8E|=|-20E|≠0所以|A-3E|≠0所以A-3E可逆由于(A-3E)(A+8

设A是n阶矩阵,满足A^2-A-2E=o,证明r(A-2E)r(A+E)=n

(A-2E)(A+E)=0所以r(A+E)小于等于n-r(A-2E)即r(A-2E)+r(A+E)小于等于n又因为r(A-2E)+r(A+E)大于等于r(A-2E,A+E)=r(A-2E,3E)=n所

线性代数一个证明题设A^k=o (k为正整数),证明:(E-A)^-1=E+A+A^2+……+A^k-1

(E-A)(E+A+A^2+……+A^k-1)=E-A^k=E所以,(E-A)^-1=E+A+A^2+……+A^k(-1)再问:nwng能不能多写点呀详细一下谢谢虽然我看懂了;老师不让写这么少再答:这