若方阵的特征值全为0,则必存在正整数K

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:34:02
若方阵的特征值全为0,则必存在正整数K
设n阶方阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

设3阶方阵A的特征值为-1 2 -3,则A‘的特征值为

A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2

设A为N阶方阵,A的m次方=0,m是自然数,则A的特征值为

A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.

A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0

需两个知识点:1.零矩阵的特征值只有零2.若λ是A的特征值,g(x)是x的多项式,则g(λ)是g(A)的特征值本题目的证明:设λ是A的特征值,则λ^k是A^k的特征值因为A^k=0,而零矩阵的特征值只

设为n阶方阵,为的伴随矩阵,若有特征值为λ,则A-1的特征值之一为

x为特征值Aa=xaA*Aa=xA*a|A|a=xA*aA*a=(|A|/x)a即A*的特征值与A特征值的关系为λ(A*)=|A|/λAa=xaAAa=xAaA^2a=x(xa)=x^2aA^2的特征

设可逆方阵A的特征值为2,则 的特征值为

题目没写全吧再问:则KA-1的特征值为,不好意思,谢谢您了再答:结果应该是2K-1过程设x是特征值2的特征向量Ax=2x则kAx=2kx则kAx-x=2kx-x即(kA-1)x=(2k-1)x所以,k

证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0

设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0

设A为3阶矩阵,且|A|=6,若A的一个特征值为2.则A必*必有一个特征值为?

知识点:若a是A的特征值,且A可逆,则a/|A|是A*的特征值所以A*必有一个特征值为2/6=1/3.你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答

设方阵A的每列元素之和均为a,则A必有一个特征值为?

必有一个特征值为a.事实上|A-rE|=0中把其余各行都加到第一行,你会发现第一行每个元素都成了a-r,当r=a时行列式为0,这说明r=a是行列式的一个根,即a是一个特征根.

设 A为 N阶方阵,方程组AX=0 有非零解,则 A必有一个特征值为 ____ .

∵AX=0有非零解∴存在ε≠0,使Aε=0=0ε即A有特征值0

设A为n阶方阵,且Ax=0有非零解,则A必有一个特征值为( ).原因是啥.

再答:�����������⣬ϣ�����ܲ��ɣ�лл��再问:û���װ�������再答:����Ӧ���и����壺���������ʽֵ��������ֵ�Ļ�再问:���ˡ�Ҫ���ڰ��

设A是n阶方阵,且|5A+3E|=0.则A必有一个特征值为

因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.

设2是3阶方阵A的一个特征值,则A^2必有一个特征值是多少?

知识点:若a是A的特征值,g(x)是x的多项式,则g(a)是g(A)的特征值你的题目:g(x)=x^2,g(2)=2^2=4,g(A)=A^2所以4是A^2的特征值注意此类题型的扩展.

设三阶方阵A的行列式为-2 A*有一个特征值为6 5A^-1-3A必有一个特征值为?思想即可

利用特征值与矩阵多项式的关系可求解若A有特征值x,则A的多项式f(A)的特征值为f(x)A的行列式为-2,A*=|A|A^(-1)=-2A^(-1),A*有一个特征值为6,即知A有一个特征值满足-2x

若3阶方阵A的特征值为-1,0,1,则矩阵B=A³-A+2E的相似对角矩阵为?

B的特征值,2,2,2再答:所以B的相似为diag(2,2,2)再问:B的特征值怎么算再答:带进去啊再答:A的特征值带入A

设A为n阶方阵,Ax=0有非零解,则A必有一个特征值?

必有一个特征值为零Ax=0有非零解表明A的秩

若一个方阵特征值全为1,只有这一个条件,能说明这个方阵就是单位矩阵吗?

不能,比如:再问:你找这个矩阵的思路是怎样的。。以特征多项式入手吗(特征值-1)^n再答:你只要学过若尔当标准型这个问题就是很显然的……

如果n阶方阵A的n个特征值全为0,则A一定是零矩阵吗?为什么呢

幂零矩阵均满足条件,即对于任意n阶方阵A,若存在k使得A^k=0则称A幂零,而一个矩阵幂零的充要条件是其特征值全为零.我们考虑幂零矩阵的Jordan标准型那么任意的形如PJP^(-1),(P可逆)的矩