设 是线性无关方正组ax=b的一个特解,是ax=0的基础解析证明 线性无关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:04:41
D是否有解无法判断A秩=4AB﹙即增广矩阵﹚秩可以是4﹙唯一一组解﹚或者5﹙无解﹚.再问:这个题答案选C再答:哦,是我没有看清楚题目,以为是另外一道题,http://zhidao.baidu.com/
选a再问:Ϊʲô��再答:���ϵ������ʽ��ֵ���㡣��ֻ�������再问:лл��再答:���á���再问:û���װ�再问:�ڲ���再答:�ڡ���再答:���ҵ绰�������㽲�
证明:由C可逆知r(C)=n所以n=r(C)=r(AB)
先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1
设k1(a1+β)+k2(a2+β)+k3(a3+β)=0则k1a1+k2a2+k3a3+(k1+k2+k3)β=0用A左乘等式两边,由已知得(k1+k2+k3)b=0因为b≠0所以k1+k2+k3=
经典题目,经典证法设k1(α1+β)+k2(α2+β)+k3(α3+β)=0.则(k1+k2+k3)β+k1α1+k2α2+k3α3=0(*)等式两边左乘A得(k1+k2+k3)Aβ+k1Aα1+k2
这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:
反证法,题设已经给出bc线性无关,那么如果abc线性相关那必定a可以用bc表示,假设a=Xb+YcAa=A(Xb+Yc)=XAb+YAc=0,和已知的Aa=0相矛盾.
能解的.首先利用齐次线性方程组解空间维数定理得到AX=0的基础解系所含向量个数;再利用非齐次方程组的两个解的差是导出组的一个解,得到AX=0的一个基础解系的解向量;而AX=B的通解结构为(AX=B的一
R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行
一.因为这样运算能使它们的和为0,因而可以判断线性无关.如果能找到其他一组系数使它们的和为0也可以说明问题.二.这要靠自己的经验的,没有一定的规则的.三.这个书上有的,一组向量无关,就不存在一组系数不
假设k1α1+k2α2+k3α3+k4β=0(*)两边都乘以A得:k1Aα1+k2Aα2+k3Aα3+k4Aβ=0由题得:Aα1=Aα2=Aα3=0Aβ=b∴k4b=0若b≠0,则k4=0带入(*)式
设A是mxn矩阵由已知,r(A)=m所以A的列向量组a1,...,an的秩也是m不妨设a1,...,am是A的列向量组a1,...,an的一个极大无关组.则对任一m维向量b,向量组a1,...,am,
1)3Ax=0,由4-2=2,知解空间的维数是2,记为x和yAx=b有解,设一个解为z,则解集合中线性无关的解向量为z,z+x,z+y2)1+2=3diag(1,1,-2),则A-E~diag(1,1
证明:设r1,r2为任意非零常数.则由题意可知:A(r1a)=0;A(r2b)=r2B;所以A(r1a-r2b)=r2B所以A(r1a-r2b)不可能等于0如果a,b线性相关,则必然存在r1a-r2b
是错的结论应该是d可由其余线性表示再问:能说为什么吗?a不可以用b,d表示吗?再答:a.b.c无关则a.b无关由a.b.d相关知d可由a.b表示再问:a不可以用b,d表示吗?那a不是可以由b,d,c表
对应的齐次方程的基础解系有5-2=3个线性无关的向量,故解集合中线性无关的解向量个数为4个再问:哦,就是非齐次的解向量个数是齐次方程基础解系个数再加上非齐次的一个任意解?再答:对别忘了采纳哦。
题目没说清楚.若A不是零矩阵,则r(A)=1.至于a3-a2虽然也是Ax=0的解,但它与a2-a1,a3-a1线性相关(等于后者减前者)
结论有误,那只是个充分条件,不必要,所以乱了.
线性无关和线性相关在齐次或非齐次线性方程组中怎么表示啊,没有所谓的在线性方程组中表示线性相关或者无关的说法,线性相关和无关是向量组的特性,和线性方程没有直接联系a1-a2,a2-a3是Ax=0线性无关