设 是线性无关方正组ax=b的一个特解,是ax=0的基础解析证明 线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:04:41
设 是线性无关方正组ax=b的一个特解,是ax=0的基础解析证明 线性无关
设A为4*5阶矩阵,且A的行向量组线性无关,则方程组AX=B

D是否有解无法判断A秩=4AB﹙即增广矩阵﹚秩可以是4﹙唯一一组解﹚或者5﹙无解﹚.再问:这个题答案选C再答:哦,是我没有看清楚题目,以为是另外一道题,http://zhidao.baidu.com/

设A是m乘n矩阵,齐次线性方程组Ax=0仅有零解的充分必要条件是.A的列向量线性无关

选a再问:Ϊʲô��再答:���ϵ������ʽ��ֵ���㡣��ֻ�������再问:лл��再答:���á���再问:û���װ�再问:�ڲ���再答:�ڡ���再答:���ҵ绰�������㽲�

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

设β是非齐次线性方程组Ax=b(b≠0)的解,a1,a2,a3是对应齐次线性方程组Ax=0的线性无关解,证明向量组a1+

设k1(a1+β)+k2(a2+β)+k3(a3+β)=0则k1a1+k2a2+k3a3+(k1+k2+k3)β=0用A左乘等式两边,由已知得(k1+k2+k3)b=0因为b≠0所以k1+k2+k3=

设e是非齐次线性方程组Ax=b(b不等0)的解,a1,a2,a3是对应齐次线性方程Ax=0的线性无关解,证明:向量组a1

经典题目,经典证法设k1(α1+β)+k2(α2+β)+k3(α3+β)=0.则(k1+k2+k3)β+k1α1+k2α2+k3α3=0(*)等式两边左乘A得(k1+k2+k3)Aβ+k1Aα1+k2

设向量组a1,a2,a3线性无关,则下列向量组线性相关的是

这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:

线性代数:设a是非齐次方程组AX=B的一个向量解,b,c是对应的齐次线性方程组AX=0的两个线性无关

反证法,题设已经给出bc线性无关,那么如果abc线性相关那必定a可以用bc表示,假设a=Xb+YcAa=A(Xb+Yc)=XAb+YAc=0,和已知的Aa=0相矛盾.

设a1,a2,a3 是四元非齐次线性方程组Ax=B的三个线性无关的解向量,且r(A)=2 ,则Ax=0的通解为

能解的.首先利用齐次线性方程组解空间维数定理得到AX=0的基础解系所含向量个数;再利用非齐次方程组的两个解的差是导出组的一个解,得到AX=0的一个基础解系的解向量;而AX=B的通解结构为(AX=B的一

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

设向量组a1.a2.a3.线性无关,则下面向量组中线性无关的是

一.因为这样运算能使它们的和为0,因而可以判断线性无关.如果能找到其他一组系数使它们的和为0也可以说明问题.二.这要靠自己的经验的,没有一定的规则的.三.这个书上有的,一组向量无关,就不存在一组系数不

设α1、α2、α3是线性方程组Ax=0的基础解系,β是Ax=b的解,求证向量组α1、α2、α3、β线性无关

假设k1α1+k2α2+k3α3+k4β=0(*)两边都乘以A得:k1Aα1+k2Aα2+k3Aα3+k4Aβ=0由题得:Aα1=Aα2=Aα3=0Aβ=b∴k4b=0若b≠0,则k4=0带入(*)式

怎么理解 AX=b的系数矩阵A的行向量组线性无关,则该方程有解

设A是mxn矩阵由已知,r(A)=m所以A的列向量组a1,...,an的秩也是m不妨设a1,...,am是A的列向量组a1,...,an的一个极大无关组.则对任一m维向量b,向量组a1,...,am,

几个线性代数问题1.设A是3*4矩阵且秩为2,若非齐次线性方程组Ax=b有解,则解集合中线性无关的解向量的个数是多少?2

1)3Ax=0,由4-2=2,知解空间的维数是2,记为x和yAx=b有解,设一个解为z,则解集合中线性无关的解向量为z,z+x,z+y2)1+2=3diag(1,1,-2),则A-E~diag(1,1

线性代数证明题 设a为Ax=0的非零解,b为Ax=b(b不等于0)的解,证明a与b线性无关

证明:设r1,r2为任意非零常数.则由题意可知:A(r1a)=0;A(r2b)=r2B;所以A(r1a-r2b)=r2B所以A(r1a-r2b)不可能等于0如果a,b线性相关,则必然存在r1a-r2b

设向量组a,b,c线性无关,a,b,d线性相关则 a必可由b,c,d线性表示 这个是错的吗?

是错的结论应该是d可由其余线性表示再问:能说为什么吗?a不可以用b,d表示吗?再答:a.b.c无关则a.b无关由a.b.d相关知d可由a.b表示再问:a不可以用b,d表示吗?那a不是可以由b,d,c表

设A是秩为2的4*5矩阵,已知非齐次线性方程组Ax=b有解,则解集合中线性无关的解向量个数为多少个.

对应的齐次方程的基础解系有5-2=3个线性无关的向量,故解集合中线性无关的解向量个数为4个再问:哦,就是非齐次的解向量个数是齐次方程基础解系个数再加上非齐次的一个任意解?再答:对别忘了采纳哦。

线性代数 设A为4*3矩阵,a1,a2,a3是方程组Ax=b的3个线性无关的解,k1,k2为任意常数,则Ax=b的通解为

题目没说清楚.若A不是零矩阵,则r(A)=1.至于a3-a2虽然也是Ax=0的解,但它与a2-a1,a3-a1线性相关(等于后者减前者)

老师,Ax=b,对于任何b有解的充要条件为什么是行向量组线性无关.

结论有误,那只是个充分条件,不必要,所以乱了.

线性代数 设a1,a2,a3是非齐次方程组Ax=b的3个线性无关的解,那么a1-a2,a2-

线性无关和线性相关在齐次或非齐次线性方程组中怎么表示啊,没有所谓的在线性方程组中表示线性相关或者无关的说法,线性相关和无关是向量组的特性,和线性方程没有直接联系a1-a2,a2-a3是Ax=0线性无关