设A为n非零方阵,当AT=A*时,R(A)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:57:40
可以这么证:设A是N×N的方阵.首先,存在非零列向量X(NX1),满足AX=0,因为A不满秩.其次,存在非零列向量Y(N×1),满足A(T)Y=0,因为A(T)也不满秩(T代表矩阵转置).然后,考虑这
这个很简单啊,r(A)
证明:必要性.因为存在一个非零矩阵B,使得AB=O所以B的列向量都是AX=0的解向量所以AX=0有非零解所以|A|=0.充分性.因为|A|=0,所以AX=0有非零解b1,...,bs令B=(b1,..
D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确
R(A)
不对,比如a=1122a的行列式就等于0
|A|E=AA^T,那么|A|E的第i行第i列的元素就是A的第i行元素与A^T的第i列的元素逐个相乘之和,【逐个相乘就是A的第i行第1列的元素与A^T的第i列第1行的元素相乘,A的第i行第2列的元素与
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
0或-75或45.行列式为特征值之积,另一特征值可能为0,也可能5,-3两个中有一个为两重
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
必要性:对AB=0两边取行列式,即│AB│=│A││B│=0,因B为非零矩阵,故│B│不等于零,所以,│A│=0充分性:假设AB=C,对AB=C两边取行列式,即│AB│=│A││B│=│C│,因为│A
kA,是每个元素都乘以k所以取行列式和每行都可以提取k,从而选C,(k∧n)|A|
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
请看图片\x0d
主要工具都是|MN|=|M|*|N|(1)kA=(kE)A,所以|kA|=|kE|*|A|.kE是n阶对角阵,对角元全为k,所以行列式|kE|=k*k*...*k=k^n.所以|kA|=k^n|A|(
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!
AX=0只有零解,可推出:R(A)=N.即A的秩为N.而A可为k*N矩阵,其中k>=N.即A不一定是N阶方阵.