设n 阶行列式A^2-2A 3E=0则A^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:33:22
设n 阶行列式A^2-2A 3E=0则A^-1
设A是n阶方阵,2,4,...,2n是A的n个特征值,计算行列式/A-3E/的值

因为2,4,...,2n是A的n个特征值,所以A-3E的特等值为2-3=-1,4-3=1,6-3=3,8-3=5...,2n-3所以|A-3E|=-1X1X3X5X...X(2n-3)=-1X3X5X

设A是n阶实对称方阵,秩(A)=r且A^2=A,计算n阶行列式︳2E-A︳

因为A^2=A所以A的特征值只能是0和1由于r(A)=r所以A的特征值为1,...,1(r个),0,...,0(n-r个)--这里用到A可对角化所以2E-A的特征值为1,...,1(r个),2,...

设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=

|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1

设A为n为阶矩阵,且A^2+3A=0,3A^2+A=0,则A的行列式det(A)=?

设B=A^2,那么B+3A=0,3B+A=0,解得A=0,B=0,所以|A|=0.再问:Ϊʲô�����ҳ�A^-1��������������0���������AA^-1=E再答:�϶����ˣ�

设n阶行列式中有n^2 -n个以上的元素为零,证明该行列式为零

n阶行列式中有n^2-n个以上的元素为零,即n阶行列式中非零的元素

设A,B都是n阶方阵,A的行列式的值为2,B的为-3,求2A*B^-1的行列式的值

|2A*B^-1|=2^n|A*||B^-1|=2^n*2^(n-1)*(-1/3)=-2^(2n-1)/3再问:不懂,求解释再答:这里用到几个性质:1.|kA|=k^n|A|2.|AB|=|A||B

设n阶方阵A的行列式|A|=2,求|A*|

|A*|=|A|^(n-1)=2^(n-1)第一个等号是知识点

设n阶行列式中有n^2-n个以上元素为零,则行列式=_______ 麻烦讲解详细点,

n阶行列式中有n^2-n个以上元素为零则至少有一行元素全为0(否则每行最多有n-1个0,全部最多有n(n-1)=n^2-n个0)所以行列式等于0再问:为什么每行最多有n-1个0啊?可以再解释一下吗?再

设A是3阶方阵,且A的行列式=2,则(2A^*-A^-1)的行列式=

27/2.计算过程如图,经济数学团队帮你解答.请及时评价.再问:A^*=A的行列式乘以A^-1=2A^-1为什么

设A是n阶方阵,且行列式|A|=25,则行列式 |-4A|=

用性质计算.经济数学团队帮你解答.请及时评价.

设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式

验证(EE*(AB*(E-E0E)BA)0E)=(A+B0BA-B),其中E是N阶单位阵.等式两边取行列式,并注意到等式右边矩阵的行列式为|A+B|*|A-B|可知结论成立.

设A,B均为n阶方阵,则AB的行列式=0可以推出A的行列式=0或B的行列式=0

知识点:|AB|=|A||B|.因为|A||B|=|AB|=0所以|A|=0或|B|=0.

设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵

A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1

设A为n阶方阵,且A的行列式=1/2,则(2A*)*是多少

用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.

设A为n阶矩阵,且行列式A=a,K为任意常数,则行列式kA=?

这是方阵的行列式的性质|kA|=k^n|A|=ak^n

设n阶方阵A的行列式|A|=1,则|2A|=

|2A|=2^n再问:能讲一下过程吗再答:|2A|=2^n|A|=2^n

设行列式|A|=2,交换|A|的两行后所得行列式为多少

交换两行,|A|=-2.1、5|A|=5³=125.3、题目我没看懂.但可以告诉你这么一些结论.|A|×|A^(-1)|=1.,A×A^(-1)=E(单位矩阵,此时,A是方阵)5、选D.不能

【线性代数】设n阶矩阵A的行列式|A|=d≠0,求|A*|

由于A×A*=|A|E(E为A的同阶单位矩阵,这里是n阶)所以|A|×|A*|=|A×A*|=||A|E|=|A|^n=d^n;|A*|=|A|^(n-1)=d^(n-1)再问:|A|^n怎么得到的?