趋近于0的等价替换有

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 00:01:27
趋近于0的等价替换有
sinx+cosx在x趋近于0时能等价替换成x+1吗?,加减不是不能进行等价无穷小的替换吗?

加减不能等价替换说的是部分,如果把加减整体一块替换,有时候还是可以的,这个关键要看是不是等价无穷小,也就是说替换的因子和被替换的因子是不是等价无穷小比如说这道题,sinx+cosx能不能用1+x替换,

x趋近于0 求 x+sinx的等价无穷小量

x趋近于0求x+sinx的等价无穷小量x+sinx~x+x=2x即x+sinx~2x再问:对不起,是减号,刚刚打错了再答:lim(x->0)(x-sinx)/x^3=lim(x->0)(1-cosx)

求极限 x趋近于0时与 ln (1+2x)等价的无穷小量是?

可以证明 lim(x→0)[ln(1+x)]/x=1,从而x→0时,ln(1+x)~x所以 x→0,ln(1+2x)~2xx趋近于无穷,2ln[(x+3)/(x-3)]=2ln[1+6/(x-3)]~

等价无穷小,当x趋近于0时,ln(1+x)~x是怎么证明的

x趋近0时,limln(1+x)/x=1,所以就等价啊.

当x趋近于0,e^tanx -e^x是x^n的等价无穷小,求n=

e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x,所以e^tan-e^x等价于tanx-x.所以,x→0时,tanx-x等价于x

利用等价无穷小的替换求极限 {ln[x+√(1+x^2)]}/x x趋近于0

x->0时,ln[x+√(1+x^2)]=ln{1+[√(1+x^2)+x-1]}~√(1+x^2)+x-1=√(1+x^2)-1+x~x^2/2+x~x原式=lim{x->0}x/x=1

等价无穷小的问题当x趋近于0,a为非零常数.(1+x)^a减1 与ax 等价无穷小.这个怎么理解啊

当x趋近于0lim[(1+x)^a-1]=lim{[(1+x)^(1/x)]^(ax)-1}=lim[e^(ax)-1]∵x趋近于0,有e^x-1x∴ax趋近于0,有e^(ax)-1~ax所以有(1+

等价无穷小的替换u趋近于0,ln(1+u)与u是等价无穷小

lim[ln(1+u)/u]=u→0lim[ln(1+u)^(1/u)]=u→0=lne=1

求极限、这道题是X趋近于1、为什么能用X趋近于零时的等价无穷小?

x-1是趋向0的所以将x-1进行无穷小替换再答:再答:如图所示,懂了吗?若芢有不明白请追问哦再答:不知我表达清楚了没有,有疑问要追问的哦~望采纳最快且最佳回答~^_^

微积分 等价无穷小的代换 当X趋近于0时,(1+X平方) —1 根号下(1+X)再减一 趋近于 多少?

第一个应该是(1+x)^2-1吧?当X趋近于0时,(1+x)^a-1~ax,第一个为2x,第二个为x/2.

等价无穷小,ln(tanx)/x x趋近0 tanx能换成x进行替换么?

等价无穷小,ln(tanx)/x,x趋近0,tanx能换成x进行替换么?可以作替换.如果分母上的x在对数符号的外面,即题目是[ln(x)]/x,那么:x→0lim[(lntanx)/x]=x→0lim

等价无穷小的替换标准是什么?

标准就是相除后取极限等于1比如x→0时,lim(tan2x)/2x=1,所以tan2x等价于2x但lim(tan2x)/3x=2/3,所以tan2x不等价于3x

x趋近于0,ln(ln(1+x))求极限可以用等价无穷小代换吗 求X从右边趋近于1时,(lnx)^(x-1)的极限

x右趋近于0时,ln(ln(1+x))求极限可以用等价无穷小代换:ln(1+x)~x,ln(ln(1+x))~lnx;由于x右趋近于0时,lim(ln(ln(1+x))/lnx)=1(L"Hospit

lim x趋近于0 ln(1+2x)/x等于多少?怎么用上ln(1+x)等价替换X请求详解

求0/0型极限,用洛必塔法则:lim(x→0)ln(1+2x)/x=lim(x→0)2/(1+2x)=2x趋近于0时,ln(1+x)等价于x,就可以用x代替ln(1+x)求极限.这里x趋近于0时,ln

常用等价无穷小替换有哪些

ln(1+x)…………xe^(x)-1…………x[n次根号下(1+x)]-1………………x/ntanx…………xarcsinx…………x1-cosx…………x²/2

limx^2sin(1/x^2),x趋近于0,为什么不能用等价无穷小替换

因为sin(1/x^2)不存在极限只能根据定理【无穷小*有界函数=无穷小】再问:那运用无穷小替换时应该注意什么条件呢?比如什么情况下能用什么情况下不能用?再答:首先是当x趋近于0时其次函数当x趋近0时