Sn(-1)nan-1 2n,则S1 S2 S3... S100=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:14:59
这是今年湖南高考题因过程很复杂,请看图
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
1)a1=2,a1+2a2=a1+a2+4a2=4a1+2a2+3a3=2(a1+a2+a3)+610+3a3=12+2a3+6a3=8(a1+a2+a3+.+an)+(a2+a3+.+an)+.+a
an=Sn-S(n-1)=nan-n(n-1)-(n-1)a(n-1)+(n-1)(n-2)an=nan-n(n-1)-(n-1)a(n-1)+(n-1)(n-2)0=nan-an-(n-1)a(n-
(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1)…(2分)an-an-1=2(n≥2),数列{an}是以a1=1为首项,以2为公差的等差数列∴an=2n-1…(6分)(
(1)由a1=1,nan+1=2Sn(n∈N*)得,a2=2a1=2,2a3=2S2,则a3=a1+a2=3,由3a4=2S3=2(a1+a2+a3),得a4=4;(2)当n>1时,由nan+1=2S
由题得:Sn=1-nan于是有:S(n-1)=1-(n-1)a(n-1)两式相减得:an=(n-1)a(n-1)-nan移项后有:(n+1)an=(n-1)a(n-1)于是:an=[(n-1)/(n+
a1+2a2+3a3+…+nan=(n-1)Sn+2n,①n=1时a1=2,n>1时a1+2a2+3a3+…+(n-1)a=(n-2)S+2(n-1),②①-②,nan=(n-1)Sn-(n-2)S+
(1)Sn=(-1)^n*an-1/2^nS(n-1)=(-1)^(n-1)*a(n-1)-1/[2^(n-1)]两式相减得:an=(-1)^n*an-(-1)^(n-1)*a(n-1)+1/2^n.
a1+2a2+3a3+...+nan=n(n+1)*(n+2),则:a1+2a2+3a3+...+(n-1)×an-1=n(n-1)*(n+1),两式相减:nan=n(n+1)*(n+2)-n(n-1
设a1+2a2+3a3+……+nan=Tn则Tn=n(n+1)(n+2)T(n-1)=n(n-1)(n+1)nan=Tn-T(n-1)=3n(n+1)an=3(n+1)Sn=3(1+1)+3(2+1)
na(n+1)=s(n)+n(n+1)=n[s(n+1)-s(n)],ns(n+1)=(n+1)s(n)+n(n+1),s(n+1)/(n+1)=s(n)/n+1{s(n)/n}是首项为s(1)/1=
为了区别一般函数,我采用C语言中的写法,用[]表示下标a[n+1]=2S[n]a[n]=2S[n-1]两式相减a[n+1]-a[n]=2(S[n]-S[n-1])=2a[n]a[n+1]/a[n]=3
①Sn=nan-2(n-1)nS(n+1)=(n+1)a(n+1)-2n(n+1)a(n+1)=(n+1)a(n+1)-nan-2n(n+1)+2(n-1)nna(n+1)-nan-4n=0a(n+1
Sn=nan-n(n-1)an=Sn-S(n-1)=nan-n(n-1)-(n-1)a(n-1)+(n-1)(n-2)化简得(n-1)[an-a(n-1)]=2(n-1)①当n≠1时an-a(n-1)
∵数列{a[n]}的前n项和为S[n],na[n+1]=S[n]+n(n+1)∴nS[n+1]-nS[n]=S[n]+n(n+1)nS[n+1]-(n+1)S[n]=n(n+1)S[n+1]/(n+1
Sn-S(n-1)=nan-(n-1)a(n-1)-4n+4=an(n-1)an-(n-1)a(n-1)=4(n-1)an-a(n-1)=4所以an=4n-3
(1)令n=1,由a1=2及nan+1=Sn+n(n+1)①得a2=4,故a2-a1=2,当n≥2时,有(n-1)an=Sn-1+n(n-1)②①-②得:nan+1-(n-1)an=an+2n整理得,
S100+S99=a100-a99-1/2^100-2^99=d-1/2^100-2^99;……S2+S1=a2-a1-1/2^2-1/2=d-1/2^2-1/2;以上全部加起来得:SUM=50d-(
(1)∵nan+1=Sn+n(n+1)∴(n-1)an=Sn-1+n(n-1)(n≥2)两式相减可得,nan+1-(n-1)an=Sn-Sn-1+2n即nan+1-(n-1)an=an+2n,(n≥2