Sn(-1)nan-1 2n,则S1 S2 S3... S100=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:14:59
Sn(-1)nan-1 2n,则S1 S2 S3... S100=
设数列an的前n项和为Sn,Sn=(-1﹚^nan-1\2^n,n属于N*,则a3= ,S1+S2+S3+.S100=

这是今年湖南高考题因过程很复杂,请看图

已知数列an是等差数列,且a1≠0,Sn为这个数列的前n项和.求1、lim nan/Sn 2、lim (Sn+Sn+1)

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

设数列{an}的前n项和为Sn,a1+2a2+3a3.+nan=(n-1)Sn+2n,

1)a1=2,a1+2a2=a1+a2+4a2=4a1+2a2+3a3=2(a1+a2+a3)+610+3a3=12+2a3+6a3=8(a1+a2+a3+.+an)+(a2+a3+.+an)+.+a

化简求得通项公式,已知Sn=nan-n(n-1) 化简an=Sn-S(n-1)=nan-n(n-1)-(n-1)a(n-

an=Sn-S(n-1)=nan-n(n-1)-(n-1)a(n-1)+(n-1)(n-2)an=nan-n(n-1)-(n-1)a(n-1)+(n-1)(n-2)0=nan-an-(n-1)a(n-

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n∈N+)

(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1)…(2分)an-an-1=2(n≥2),数列{an}是以a1=1为首项,以2为公差的等差数列∴an=2n-1…(6分)(

已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*).

(1)由a1=1,nan+1=2Sn(n∈N*)得,a2=2a1=2,2a3=2S2,则a3=a1+a2=3,由3a4=2S3=2(a1+a2+a3),得a4=4;(2)当n>1时,由nan+1=2S

已知数列an前n项的和为Sn 且满足Sn=1-nan n=自然数

由题得:Sn=1-nan于是有:S(n-1)=1-(n-1)a(n-1)两式相减得:an=(n-1)a(n-1)-nan移项后有:(n+1)an=(n-1)a(n-1)于是:an=[(n-1)/(n+

设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)

a1+2a2+3a3+…+nan=(n-1)Sn+2n,①n=1时a1=2,n>1时a1+2a2+3a3+…+(n-1)a=(n-2)S+2(n-1),②①-②,nan=(n-1)Sn-(n-2)S+

设Sn为数列an的前n项和,Sn=(-1)*nan-1/2*n,n属于N*,则(1)a3=?(2)S1+S2+...+S

(1)Sn=(-1)^n*an-1/2^nS(n-1)=(-1)^(n-1)*a(n-1)-1/[2^(n-1)]两式相减得:an=(-1)^n*an-(-1)^(n-1)*a(n-1)+1/2^n.

已知数列an满足a1+2a2+3a3+...+nan=n(n+1)*(n+2),则数列an的前n项和Sn=?

a1+2a2+3a3+...+nan=n(n+1)*(n+2),则:a1+2a2+3a3+...+(n-1)×an-1=n(n-1)*(n+1),两式相减:nan=n(n+1)*(n+2)-n(n-1

已知数列an满足a1+2a2+3a3+……+nan=n(n+1)(n+2),则它的前n项和Sn=?

设a1+2a2+3a3+……+nan=Tn则Tn=n(n+1)(n+2)T(n-1)=n(n-1)(n+1)nan=Tn-T(n-1)=3n(n+1)an=3(n+1)Sn=3(1+1)+3(2+1)

已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式

na(n+1)=s(n)+n(n+1)=n[s(n+1)-s(n)],ns(n+1)=(n+1)s(n)+n(n+1),s(n+1)/(n+1)=s(n)/n+1{s(n)/n}是首项为s(1)/1=

数列an的前n项和Sn,a1=1,a(n+1)(下标)=2Sn.求通项an 求nan的前n项和Tn

为了区别一般函数,我采用C语言中的写法,用[]表示下标a[n+1]=2S[n]a[n]=2S[n-1]两式相减a[n+1]-a[n]=2(S[n]-S[n-1])=2a[n]a[n+1]/a[n]=3

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2(n-1)n

①Sn=nan-2(n-1)nS(n+1)=(n+1)a(n+1)-2n(n+1)a(n+1)=(n+1)a(n+1)-nan-2n(n+1)+2(n-1)nna(n+1)-nan-4n=0a(n+1

a1=1,Sn=nan-n(n-1),求an的通项公式

Sn=nan-n(n-1)an=Sn-S(n-1)=nan-n(n-1)-(n-1)a(n-1)+(n-1)(n-2)化简得(n-1)[an-a(n-1)]=2(n-1)①当n≠1时an-a(n-1)

数列an的前n项和为sn,且a1=2,nan+1=sn+n*(n+1),求数列an通项公式

∵数列{a[n]}的前n项和为S[n],na[n+1]=S[n]+n(n+1)∴nS[n+1]-nS[n]=S[n]+n(n+1)nS[n+1]-(n+1)S[n]=n(n+1)S[n+1]/(n+1

已知a1=1.Sn=nan-2n(n-1).求通项公式

Sn-S(n-1)=nan-(n-1)a(n-1)-4n+4=an(n-1)an-(n-1)a(n-1)=4(n-1)an-a(n-1)=4所以an=4n-3

已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1),

(1)令n=1,由a1=2及nan+1=Sn+n(n+1)①得a2=4,故a2-a1=2,当n≥2时,有(n-1)an=Sn-1+n(n-1)②①-②得:nan+1-(n-1)an=an+2n整理得,

等差数列前n项和Sn=(-1)^nAn-1/2^n 求 S1+S2+S3+……+S100

S100+S99=a100-a99-1/2^100-2^99=d-1/2^100-2^99;……S2+S1=a2-a1-1/2^2-1/2=d-1/2^2-1/2;以上全部加起来得:SUM=50d-(

已知数列an的前n项和为Sn,a1=2,nan+1=Sn+n(n+1),

(1)∵nan+1=Sn+n(n+1)∴(n-1)an=Sn-1+n(n-1)(n≥2)两式相减可得,nan+1-(n-1)an=Sn-Sn-1+2n即nan+1-(n-1)an=an+2n,(n≥2