已知△ABC中,角A,B,C所对的边分别是a,b,c,且a+c=根号2b
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 06:53:42
已知△ABC中,角A,B,C所对的边分别是a,b,c,且a+c=根号2b
1.求证tanA/2.tanC/2的值
2.求证2/tanB/2=1/tanA+1/tanc
1.求证tanA/2.tanC/2的值
2.求证2/tanB/2=1/tanA+1/tanc
1.由正弦定理知:
a/sinA=b/sinB=c/sinC=2R
a=sinA·2R
b=sinB·2R
c=sinC·2R
而a+c=√2b
即sinA·2R+sinC·2R=√2sinB·2R
∴sinA+sinC=√2sinB
∵π-B=A+c
∴sinB=sin(π-B)=sin(A+C)
根据和差化积公式:sinA+sinC=2sin(A/2+C/2)cos(A/2-C/2)
倍角公式:sin(A+C)=2sin(A/2+C/2)cos(A/2+C/2)
则2sin(A/2+C/2)cos(A/2-C/2)=2√2sin(A/2+C/2)cos(A/2+C/2)
即cos(A/2-C/2)=√2cos(A/2+C/2)
cos(A/2)cos(C/2)+sin(A/2)sin(C/2)=√2[cos(A/2)cos(C/2)-sin(A/2)sin(C/2)]
两边同时除以cos(A/2)cos(C/2),得:
1+tan(A/2)tan(C/2)=√2[1-tan(A/2)tan(C/2)]
令tan(A/2)tan(C/2)=x
1+x=√2(1-x)
1+x=√2-√2x
√2x+x=√2-1
(√2+1)x=√2-1
x=(√2-1)/(√2+1)
x=3-2√2
即tan(A/2)tan(C/2)=3-2√2
2.∵tanA=tan(A/2+A/2)=2tan(A/2)/[1-tan²(A/2)]
1/tanA=[1-tan²(A/2)]/2tan(A/2)
同理:tanC=tan(C/2+C/2)=2tan(C/2)/[1-tan²(C/2)]
1/tanC=[1-tan²(C/2)]/2tan(C/2)
则1/tanA+1/tanC
=[1-tan²(A/2)]/2tan(A/2)+[1-tan²(C/2)]/2tan(C/2)
=[tan(C/2)-tan(C/2)tan²(A/2)+tan(A/2)-tan(A/2)tan²(C/2)]/[2tan(A/2)tan(C/2)]
=[tan(A/2)+tan(C/2)][1-tan(A/2)tan(C/2)]/[2tan(A/2)tan(C/2)]
=[tan(A/2)+tan(C/2)]×[1-(3-2√2)]/[2×(3-2√2)]
=(√2+1)[tan(A/2)+tan(C/2)]
而B=π-(A+C)
B/2=π/2-(A+C)/2
tan(B/2)=tan[π/2-(A+C)/2]=cot(A/2+C/2)=1/tan(A/2+C/2)
则2/tan(B/2)
=2tan(A/2+C/2)
=2[tan(A/2)+tan(C/2)]/[1-tan(A/2)tan(C/2)]
=2[tan(A/2)+tan(C/2)]/[1-(3-2√2)]
=(√2+1)[tan(A/2)+tan(C/2)]
∴2/tan(B/2)=1/tanA+1/tanC
a/sinA=b/sinB=c/sinC=2R
a=sinA·2R
b=sinB·2R
c=sinC·2R
而a+c=√2b
即sinA·2R+sinC·2R=√2sinB·2R
∴sinA+sinC=√2sinB
∵π-B=A+c
∴sinB=sin(π-B)=sin(A+C)
根据和差化积公式:sinA+sinC=2sin(A/2+C/2)cos(A/2-C/2)
倍角公式:sin(A+C)=2sin(A/2+C/2)cos(A/2+C/2)
则2sin(A/2+C/2)cos(A/2-C/2)=2√2sin(A/2+C/2)cos(A/2+C/2)
即cos(A/2-C/2)=√2cos(A/2+C/2)
cos(A/2)cos(C/2)+sin(A/2)sin(C/2)=√2[cos(A/2)cos(C/2)-sin(A/2)sin(C/2)]
两边同时除以cos(A/2)cos(C/2),得:
1+tan(A/2)tan(C/2)=√2[1-tan(A/2)tan(C/2)]
令tan(A/2)tan(C/2)=x
1+x=√2(1-x)
1+x=√2-√2x
√2x+x=√2-1
(√2+1)x=√2-1
x=(√2-1)/(√2+1)
x=3-2√2
即tan(A/2)tan(C/2)=3-2√2
2.∵tanA=tan(A/2+A/2)=2tan(A/2)/[1-tan²(A/2)]
1/tanA=[1-tan²(A/2)]/2tan(A/2)
同理:tanC=tan(C/2+C/2)=2tan(C/2)/[1-tan²(C/2)]
1/tanC=[1-tan²(C/2)]/2tan(C/2)
则1/tanA+1/tanC
=[1-tan²(A/2)]/2tan(A/2)+[1-tan²(C/2)]/2tan(C/2)
=[tan(C/2)-tan(C/2)tan²(A/2)+tan(A/2)-tan(A/2)tan²(C/2)]/[2tan(A/2)tan(C/2)]
=[tan(A/2)+tan(C/2)][1-tan(A/2)tan(C/2)]/[2tan(A/2)tan(C/2)]
=[tan(A/2)+tan(C/2)]×[1-(3-2√2)]/[2×(3-2√2)]
=(√2+1)[tan(A/2)+tan(C/2)]
而B=π-(A+C)
B/2=π/2-(A+C)/2
tan(B/2)=tan[π/2-(A+C)/2]=cot(A/2+C/2)=1/tan(A/2+C/2)
则2/tan(B/2)
=2tan(A/2+C/2)
=2[tan(A/2)+tan(C/2)]/[1-tan(A/2)tan(C/2)]
=2[tan(A/2)+tan(C/2)]/[1-(3-2√2)]
=(√2+1)[tan(A/2)+tan(C/2)]
∴2/tan(B/2)=1/tanA+1/tanC
已知△ABC中,角A,B,C所对的边分别是a,b,c,且a+c=根号2b
已知△ABC中,角A,B,C所对的边分别是a,b,c,且a+c=√2b
已知:△ABC中,角A、B、C所对的边分别是a,b,c,且a²+c²-b²=½a
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,A是锐角,且根号3b=2asinB
已知△ABC中,三边a,b,c所对的角分别是A,B,C,且a+c=2b
已知:△ABC中,角A、B、C所对边分别是a、b、c,且满足2a+2c=(√3+1)b
已知在三角形ABC中,内角A,B.C所对的边分别为a,b,c且acosC+(根号3)c/2=b
已知a,b,c分别是三角形ABC中角A,角B.角C所对边的长,a,b,c满足等式(2b)平方=4(c+a)(c-a),且
已知三角形ABC三个内角A,B,C所对的边分别为a,b,c,A是锐角,且(根号3)b=2asinB
在三角形ABC中,已知角A,B,C所对的三条边分别是a,b,c,且cosB/cosC=-b/2a+c
在△ABC中,内角A,B,C的对边分别是a,b,c已知B=C,2b=根号3a
已知△ABC中,内角A,B,C所对的边分别是a,b,c且A,B,C成等差数列,三边a,b,c成等比数列,b=2,则△AB