作业帮 > 数学 > 作业

已知xi∈R,x1+x2+……+xi=0, |x1|+|x2|+...+|xi|=1,求证x1/1+x2/2+…+xi/

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:47:59
已知xi∈R,x1+x2+……+xi=0, |x1|+|x2|+...+|xi|=1,求证x1/1+x2/2+…+xi/i
已知xi∈R,x1+x2+……+xi=0, |x1|+|x2|+...+|xi|=1,求证x1/1+x2/2+…+xi/
题中的 i,n 应该相同.下面把i 换成n.
把x1,x2,...,xn中的非负数,依次称为 y1,y2,...,ys.把x1,x2,...,xn中的负数,依次称为 z1,z2,...,zt,
于是
s+t=n,
y1+...+ys + z1+...+zt =0,
y1+...+ys -z1-.-zt=1 ===> y1+...+ys = 1+ z1+...+zt
于是:y1 + ...+ys = -(z1+...+zt) = 1/2
x1/1+x2/2+…+xn/n
= ((xi / i)对所有非负xi 求和 - (-xj / j) 对所有负xj 求和)