导数练习题设函数f(x)=x^2-mlnx,h(x)=x^2-x+a.(1)当a=0时,f(x)≥h(x),在(1,+∞
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 17:06:11
导数练习题
设函数f(x)=x^2-mlnx,h(x)=x^2-x+a.
(1)当a=0时,f(x)≥h(x),在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2是,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
细细~
设函数f(x)=x^2-mlnx,h(x)=x^2-x+a.
(1)当a=0时,f(x)≥h(x),在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2是,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
细细~
(1)
x^2-mlnx-x^2+x=x-mlnx≥0(x>1),
x≥mlnx,m≤x/lnx,令g(x)=x/lnx,g'(x)=(lnx-x*1/x)/(lnx)^2=(lnx-1)/(lnx)^2,取g'(x)=0,解得lnx=1,x=e,
因为g(x)在x∈(1,e)上单调递减,在x∈(e,+∞)上单调递增,所以在x=e处取得最小值,gmin(x)=g(e)=e,
所以有m≤e;
(2)
k(x)=-2lnx+x-a=0,设两零点为x1≥1,x2≤3,a=-2lnx1+x1=-2lnx2+x2;
设g(x1)=-2lnx1+x1,y(x2)=-2lnx2+x2,
g'(x1)=-2/x1+1,(x1≥1),得g(x1)≥g(2)=-2ln2+2;
y'(x2)=-2/x2+1,(x2≤3),得y(x2)≤y(3)=-2ln3+3;
所以有-2ln2+2≤a≤-2ln3+3
(3)
f'(x)=2x-m/x,
h'(x)=2x-1,
取f'(x)=0,得m=2x^2;x=√m/2,
取h'(x)=0,得x=1/2,
要满足f(x)和h(x)在公共定义域上具有相同的单调性,两函数极值点必相同,即
√m/2=1/2,所以m=1/2
x^2-mlnx-x^2+x=x-mlnx≥0(x>1),
x≥mlnx,m≤x/lnx,令g(x)=x/lnx,g'(x)=(lnx-x*1/x)/(lnx)^2=(lnx-1)/(lnx)^2,取g'(x)=0,解得lnx=1,x=e,
因为g(x)在x∈(1,e)上单调递减,在x∈(e,+∞)上单调递增,所以在x=e处取得最小值,gmin(x)=g(e)=e,
所以有m≤e;
(2)
k(x)=-2lnx+x-a=0,设两零点为x1≥1,x2≤3,a=-2lnx1+x1=-2lnx2+x2;
设g(x1)=-2lnx1+x1,y(x2)=-2lnx2+x2,
g'(x1)=-2/x1+1,(x1≥1),得g(x1)≥g(2)=-2ln2+2;
y'(x2)=-2/x2+1,(x2≤3),得y(x2)≤y(3)=-2ln3+3;
所以有-2ln2+2≤a≤-2ln3+3
(3)
f'(x)=2x-m/x,
h'(x)=2x-1,
取f'(x)=0,得m=2x^2;x=√m/2,
取h'(x)=0,得x=1/2,
要满足f(x)和h(x)在公共定义域上具有相同的单调性,两函数极值点必相同,即
√m/2=1/2,所以m=1/2
导数练习题设函数f(x)=x^2-mlnx,h(x)=x^2-x+a.(1)当a=0时,f(x)≥h(x),在(1,+∞
已知函数f(x)=x^2-mlnx,h(x)=x^2-x+a (1)当a=0时,f(x)>=h(x)在(1,正无穷)恒成
设函数f(x)=a/x+xlnx,g(x)=x^3- x^2-3,(1)讨论函数h(x)=f(x)/x 的单调性.
设函数f(x)在x=a处可导,且lim[f(a+5h)]-f(a-5h)]/2h=1,则f'(a)=
设f(x)在x=x.处有二阶导数,证〖f(x.+h)-2f(x.)+f(x.-h)〗/h^2在h→0时的极限等于f(x.
设a为实数,函数f(x)=2x^2+(x-a)|x-a| 设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥
已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g(x)讨论h(x
用导数定义求导f(x)=10x^2,求在x=-1处导数值,题目要求按导数定义.故设变量为h,则当h趋于0时,函数化简为-
设f(x)=(1/2)x^2+2ax h(x)=e^x+ax-1,若当x≥2时,不等式f(x)≤h(x)恒成立,求实数a
设f(x)在x=a处可导,f'(x)=b 求极限lim(h-0) f(a-h)-f(a+2h)/ h
f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a
设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2