给定双曲线x^2-y^2/2 =1. 过点A(2,1)的直线与双曲线交于P1、P2,求线段P1P2的中点P的轨迹方程.详
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 13:27:22
给定双曲线x^2-y^2/2 =1. 过点A(2,1)的直线与双曲线交于P1、P2,求线段P1P2的中点P的轨迹方程.详解啊
设P1(x1,y1),P2(x2,y2),线段P1P2的中点P(x,y),
则x1^2-y1^2/2 =1,2^2-y2^2/2 =1,
两式相减得:(x1+x2)(x1-x2)-(y1+y2)(y1-y2)/2=0,
∵x1+x2=2x,y1+y2=2y,
∴2x(x1-x2)- 2y(y1-y2)/2=0,
(y1-y2)/ (x1-x2)=2x/y.这就是直线P1P2的斜率.
又因直线过点A(2,1),及中点P(x,y),
所以直线的斜率还可表示为(y-1)/(x-2),
综上可知2x/y与(y-1)/(x-2) 都表示直线P1P2的斜率,
所以2x/y=(y-1)/(x-2),
化简得:2x^2-y^2-4x+y=0,这就是线段P1P2的中点P的轨迹方程.
则x1^2-y1^2/2 =1,2^2-y2^2/2 =1,
两式相减得:(x1+x2)(x1-x2)-(y1+y2)(y1-y2)/2=0,
∵x1+x2=2x,y1+y2=2y,
∴2x(x1-x2)- 2y(y1-y2)/2=0,
(y1-y2)/ (x1-x2)=2x/y.这就是直线P1P2的斜率.
又因直线过点A(2,1),及中点P(x,y),
所以直线的斜率还可表示为(y-1)/(x-2),
综上可知2x/y与(y-1)/(x-2) 都表示直线P1P2的斜率,
所以2x/y=(y-1)/(x-2),
化简得:2x^2-y^2-4x+y=0,这就是线段P1P2的中点P的轨迹方程.
给定双曲线x^2-y^2/2 =1. 过点A(2,1)的直线与双曲线交于P1、P2,求线段P1P2的中点P的轨迹方程
给定双曲线x^2-y^2/2=1,过点A(2,1)的直线l与所给双曲线交于P1,P2两点,求线段P1P2中点P的轨迹方程
已知双曲线x方-y方|2=1,过点A(2,1)的直线与已知双曲线交于P1,P2两点,求线段P1P2中点P的轨迹方程
已知双曲线x²-y²/2=1,过点P(2,1)的直线交双曲线于P1,P2,求线段P1P2的中点M的轨
给定双曲线x2-y2/2=1 过点A(2,1)的直线与所给双曲线交于两点P1 P2 如果A点是弦P1P2的中点,求直线l
已知斜率为2的直线与双曲线X^2-Y^2=12相交于P1,P2,求线段P1P2中点的轨迹方程.
过A(-1,2)作直线L交抛物线y^2=2x于P1,P2,则P1P2的中点的轨迹方程为
过点(2,-1)作直线交双曲线2X^2-Y^2=2于P、Q两点,求线段PQ的中点M的轨迹方程
已知双曲线方程为x^2-y^2/2=1,过点A(0,1)作斜率为k的直线(k不等于0),直线交双曲线于点p1,p2,若p
过点M(-2,0)的直线L与椭圆X^2/2+Y^2=1交于P1、P2两点,线段P1P2的中点为P
过点M的 (-2,0)直线L与椭圆x^2/2+y^2=1交于P1,P2线段P1,P2中点为P
过点M(-2,0)的直线m与椭圆x^2/2+y^2=1交于P1,P2,线段P1P2的中点为P,设直线的斜率为k2 (k不