如图,在正方形ABCD中,AB=4,点E是边CD上的任意一点(不与C、D重合),将△ADE沿AE翻折至△AFE,延长EF
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:58:17
如图,在正方形ABCD中,AB=4,点E是边CD上的任意一点(不与C、D重合),将△ADE沿AE翻折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)若设DE=x,BG=y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)连接CF,若AG∥CF,求DE的长.
(1)求证:△ABG≌△AFG;
(2)若设DE=x,BG=y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)连接CF,若AG∥CF,求DE的长.
(1)证明:∵四边形ABCD为正方形,
∴∠D=∠B=90°,AB=AD,
∵△ADE沿AE翻折至△AFE,
∴AD=AF,∠D=∠AFE=90°,
∴AB=AF,
在Rt△ABG和Rt△AFG中
AB=AF
AG=AG
∴△ABG≌△AFG(HL);
(2)∵△ADE≌△AFE,△ABG≌△AFG,
∴BG=FG,DE=FE,
∴EG=FE+FG,
∵AB=4,
∴BC=CD=4,
∵DE=x,BG=y,
∴EC=4-x,GE=x+y,GC=4-y,
∴在Rt△EGC中,CG2+CE2=GE2,
∴(4-y)2+(4-x)2=(x+y)2,
∴y=
−4x+16
x+4(0<x<4);
(3)∵AG∥CF,
∴∠AGB=∠FCG,∠AGF=∠GFC,
∵△ABG≌△AFG,
∴∠AGB=∠AGF,
∴∠FCG=∠GFC,
∴CG=GF,
∴y=4-y,解得y=2,
把y=2代入y=
−4x+16
x+4得
−4x+16
x+4=2,解得x=
4
3,
∴DE=
4
3.
∴∠D=∠B=90°,AB=AD,
∵△ADE沿AE翻折至△AFE,
∴AD=AF,∠D=∠AFE=90°,
∴AB=AF,
在Rt△ABG和Rt△AFG中
AB=AF
AG=AG
∴△ABG≌△AFG(HL);
(2)∵△ADE≌△AFE,△ABG≌△AFG,
∴BG=FG,DE=FE,
∴EG=FE+FG,
∵AB=4,
∴BC=CD=4,
∵DE=x,BG=y,
∴EC=4-x,GE=x+y,GC=4-y,
∴在Rt△EGC中,CG2+CE2=GE2,
∴(4-y)2+(4-x)2=(x+y)2,
∴y=
−4x+16
x+4(0<x<4);
(3)∵AG∥CF,
∴∠AGB=∠FCG,∠AGF=∠GFC,
∵△ABG≌△AFG,
∴∠AGB=∠AGF,
∴∠FCG=∠GFC,
∴CG=GF,
∴y=4-y,解得y=2,
把y=2代入y=
−4x+16
x+4得
−4x+16
x+4=2,解得x=
4
3,
∴DE=
4
3.
如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G
一道证明题,如图,在正方形ABCD中,AB=12,点E在边CD上,CD=3DE,将△ADE沿AE对折至△AFE,延长EF
在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连
如图,在矩形ABCD中,AB = 4,BC = 3,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF⊥AE,
如图,正方形ABCD中,点E在边CD上,将三角形ADE沿AE对折至三角形AFE,延长EF交边BC于点G,G为BC的中点,
如图,矩形ABCD中,AB=4,AD=5,E是CD上的一点,将△ADE沿AE折叠,点D刚好与BC边上点F重合,则线段CE
(2012•瑶海区三模)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE
已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交A
已知:如图,在正方形ABCD中,点E是边CD上的动点(点E不与端点C、D重合),CD=mDE,AE的垂直平分线FP分别交
如图在正方形ABCD中,AB=12,点E是DC上的动点,(E不与点D、C重合),AE的垂直平分线FP分别交AD、AE、B
如图,在长方形ABCD中,AD=5cm,AB=4cm,E是CD上的一点,若以AE为折痕,将△ADE翻折过来,顶点D恰好与
如图,在正方形ABCD中,F是CD上的一点AE⊥AF.点E在CB的延长线上,EF交于AB于点G,当tan ∠D