请选择四处不同分布的区域组合:A、A2 A3 B2 C3 B、A2 B2 B3 C2 C、A2 B2 C2 D4 D、A
1.设a,b,c是三角形的三边,求证:a(b2+c2)+b(a2+c2)+c(a2+b2)-a3-b3-c3>2abc
p1821.设a,b,c是三角形ABC的三边,证a(b2+c2)+b(c2+a2)+c(a2+b2)-a3-b3-c3>
证明2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)
已知a+b+c=1求证 a3+b3+c3>=1/3(a2+b2+c2)
a+b+c=2 a2+b2+c2=14 a3+b3+c3=20
证:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b),abc不全相等的正数
已知:a2+b2+c2-2(a+b+c)+3=0,求a3+b3+c3-3abc的值
已知a,b,c∈R+,求证:(a+b+c)(a3+b3+c3)≥(a2+b2+c2)2
已知a3+b3+c3=a2+b2+c2=a+b+c=1.求证abc=0
已知a3+b3+c3=a2+b2+c2=a+b+c=1,求证abc=0.
帮个忙a,b,c是不全相等的正数 证明:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b) 注:字母
以知a,b,c是不全相等的正数,求证 2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)