作业帮 > 数学 > 作业

已知点A,B,P(1,2)是抛物线y^2=2px上的点,若直线PA,PB的倾斜角互补则直线AB的斜率是______

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:32:28
已知点A,B,P(1,2)是抛物线y^2=2px上的点,若直线PA,PB的倾斜角互补则直线AB的斜率是______
已知点A,B,P(1,2)是抛物线y^2=2px上的点,若直线PA,PB的倾斜角互补则直线AB的斜率是______
-2
首先根据两直线倾斜角互补,可以分别设PA斜率为k,PB斜率为-k
由此得PA,PB直线方程分别为y=k(x-1)+2,y=-k(x-1)+2
以为p(1,2)是抛物线上的点,带入抛物线方程得p=2,即抛物线方程为y^2=4x
直线PA方程与抛物线方程联立得,ky^2-4y-4k+8=0
同理PB方程与抛物线方程联立得,ky^2+4y-4k-8=0
有两根之和=-b/a,得
ya=4/k-1
yb=-4/k-1
代入方程y^2=4x,得
xa=(4/k-1)^2/4
xb=(-4/k-1)^2/4
AB的斜率=(yb-ya)/(xb-xa)=-2