作业帮 > 数学 > 作业

高中数学向量简单问题已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 05:07:58
高中数学向量简单问题
已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向量a⊥向量b,问:是否存在实数t,使得向量(a-b)和向量m的夹角的夹角为π/4,若存在,请求出t;若不存在,请说明理由.

向高手请教,谢谢~~
高中数学向量简单问题已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向
a⊥b,则a*b=0
|a-b|^2=(a-b)*(a-b)=|a|^2+|b|^2=5+1=6,|a-b|=√6
|a+tb|^2=(a+tb)*(a+tb)=|a|^2+t^2×|b|^2=5+t^2,|a+tb|=√(5+t^2)
(a-b)*m=(a-b)*(a+tb)=|a|^2-t|b|^2=5-t
a-b与m的夹角为π/4,则cos(π/4)=[(a-b)*(a+tb)]/|a-b|*|a+tb|]=(5-t)/[√6*(5+t^2),t=(-5±3√5)/2