已知实数a,b,c满足a>b>c,且有a+b+c=1,a2+b2+c2=1.求证:1<a+b<4/3
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:07:13
已知实数a,b,c满足a>b>c,且有a+b+c=1,a2+b2+c2=1.求证:1<a+b<4/3
已知实数a、b、c满足a>b>c,且有a+b+c=1,a²+b²+c²=1.求证:1<a+b<4/3.
证明:由a+b+c=1得:a+b=1-c,两边同时平方,得:
a²+b²+2ab=1-2c+c²
1-c²+2ab=1-2c+c²
2ab=2c²-2c
因a>b,故(a-b)²>0,展开得:2ab<a²+b²=1-c²,则有:
2c²-2c<1-c²
3c²-2c-1<0
(3c+1)(c-1)<0
解得:-1/3<c<1,
另外,由(a+b+c)²=a²+b²+c²+2ab+2bc+2ca可得:
1=1+2ab+2bc+2ca
即:ab+bc+ca=0,
可以看出,若a、b、c全为正或者全为负,那么上式都将大于0,所以a、b、c中有负数,因c最小,所以c必定是负数,即c
证明:由a+b+c=1得:a+b=1-c,两边同时平方,得:
a²+b²+2ab=1-2c+c²
1-c²+2ab=1-2c+c²
2ab=2c²-2c
因a>b,故(a-b)²>0,展开得:2ab<a²+b²=1-c²,则有:
2c²-2c<1-c²
3c²-2c-1<0
(3c+1)(c-1)<0
解得:-1/3<c<1,
另外,由(a+b+c)²=a²+b²+c²+2ab+2bc+2ca可得:
1=1+2ab+2bc+2ca
即:ab+bc+ca=0,
可以看出,若a、b、c全为正或者全为负,那么上式都将大于0,所以a、b、c中有负数,因c最小,所以c必定是负数,即c
已知实数a,b,c满足a>b>c,且有a+b+c=1,a2+b2+c2=1.求证:1<a+b<4/3
设a.b.c为一切实数且a+b+c=1,求证a2+b2+c2>=1/3
已知实数a.b.c.d.满足(a-1)2+2c2=d2-1,且c2+d2=-根号(1-1/b) +1.求a2+b2+c2
已知a,b,c∈R+,且a+b+c=1,求证:1>a2+b2+c2 ≥ 1/3 ,
已知三个正数a,b,c满足a2,b2,c2成等差数列,求证1a+b
已知实数abc满足a+2b+c=1,a2+b2+c2=1,求证:-23
已知实数a、b、c满足ab+bc+ca=1,求证:a2+b2+c2≥1.
若实数a.b.c.d都不等于0,且满足(a2+b2)d2-2b(a+c)d+b2+c2=0 求证b2=ac
已知a ,b,c >0且a2+b2=c2 求证,an+bn=3且属于正实数)
a>b>c,求证b^c2+c^a2+a^b2>b2^c+c2^a+a2^b
已知a,b,c为非零实数,且满足a2+b2+c2=1,a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=
已知a>b>c,a+b+c=1,a2+b2+c2=1.求证:(1)1