作业帮 > 数学 > 作业

已知函数f(x)=(3/5)sinx+sinβcosx+1(β为常数)且f(0)=9/5

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 08:03:44
已知函数f(x)=(3/5)sinx+sinβcosx+1(β为常数)且f(0)=9/5
(1)求sinβ与cos2β的值
(2)求函数f(x)的最大值与最小值
已知函数f(x)=(3/5)sinx+sinβcosx+1(β为常数)且f(0)=9/5
1
f(x)=(3/5)sinx+sinβcosx+1
f(0)=9/5
∴sinβcos0+1=9/5
∴sinβ=4/5
cos2β=1-2sin²β=1-2(4/5)²=-7/25
2
f(x)=(3/5)sinx+(4/5)cosx+1
设sinφ=4/5,cosφ=3/5
f(x) =sinxcosφ+cosxsinφ+1=sin(x+φ)+1
∵sin(x+φ)最大值为1,最小值为-1
∴f(x)的最大值为2,最小值为0