如图AB是半圆直径,半径OC⊥AB于点O,ADAD平分∠CAB交弧BC于点D,连接CD、OD
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:36:56
如图AB是半圆直径,半径OC⊥AB于点O,ADAD平分∠CAB交弧BC于点D,连接CD、OD
给出以下四个结论:①AC∥OD;②;CE=OE③△ODE∽△ADO;④.2CD²=CE·AB其中正确结论的序号是
AD平分∠CAB交弧BC于点D
给出以下四个结论:①AC∥OD;②;CE=OE③△ODE∽△ADO;④.2CD²=CE·AB其中正确结论的序号是
AD平分∠CAB交弧BC于点D
∵OA=OD,∴∠ADO=∠DAO
又∵AD平分∠CAB,∴∠DAO=∠DAC
∴∠DAC=∠ADO,∴AC∥OD,即结论①正确!
结论②不正确,∵假设CE=OE,则由于AD平分∠CAB,
∴推出AC=AO,而CO⊥AO,∴AC>AO产生矛盾!
结论③不正确,∵假设△ODE∽△ADO,则∠EOD=∠OAD=∠CAD
∴A、O、C、D四点共圆,∴∠ADC=∠COA=90°
∴∠BDC=∠BDA+∠ADC=90°+90°=180°,∴B、D、C三点共线,然而这是不可能的!
∴产生矛盾,故结论③不正确!
∵∠CDE =∠CBA=90°-∠CAB=∠ACO=∠COD
∴△CDE∽△COD,∴CD/CO=CE/CD
∴CD^2=CO*CE=1/2AB*CE
∴2CD^2=AB*CE
故结论④正确!
综上,只有结论①与④是正确的!
又∵AD平分∠CAB,∴∠DAO=∠DAC
∴∠DAC=∠ADO,∴AC∥OD,即结论①正确!
结论②不正确,∵假设CE=OE,则由于AD平分∠CAB,
∴推出AC=AO,而CO⊥AO,∴AC>AO产生矛盾!
结论③不正确,∵假设△ODE∽△ADO,则∠EOD=∠OAD=∠CAD
∴A、O、C、D四点共圆,∴∠ADC=∠COA=90°
∴∠BDC=∠BDA+∠ADC=90°+90°=180°,∴B、D、C三点共线,然而这是不可能的!
∴产生矛盾,故结论③不正确!
∵∠CDE =∠CBA=90°-∠CAB=∠ACO=∠COD
∴△CDE∽△COD,∴CD/CO=CE/CD
∴CD^2=CO*CE=1/2AB*CE
∴2CD^2=AB*CE
故结论④正确!
综上,只有结论①与④是正确的!
如图AB是半圆直径,半径OC⊥AB于点O,ADAD平分∠CAB交弧BC于点D,连接CD、OD
如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下
如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连结CD、OD,给出以下四个结论:①AC∥O
如图,在以AB为直径的半圆O中,AB=6cm,半径OC⊥AB,点D在OC上,且CD:OD=1:2,延长AD交半圆于点E.
如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.
如图,AB是⊙O的直径,弦CD垂直平分半径OA,P是BC弧的中点,弦CF平分∠DCP,交AP于H点,连接PF交AB于G点
如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O
如图,AB是半圆O的直径,C为半圆上一点,∠CAB的角平分线AE交BC于点D,交半圆O于点E.若AB=10,tan∠CA
初三数学题如图,CD切圆O于点D,连接OC,交圆O于点B,过点B作弦AB⊥OD,点E为垂足,已知圆O的半径为10,sin
如图,AB是⊙O的直径,AD与⊙O相切于点A,过B点作BC∥OD交⊙O于点C,连接OC、AC,AC交OD于点E.
如图,CD切圆O于点D,连接OC,交圆O于点B,过点B做弦AB垂直于OD,点E为垂足,已知圆O的半径为10,SIN角CO
如图ab是半圆的直径 ac为弦 od垂直ab交ac于点d 垂足为o 圆o的半径为4 od为3 求cd