an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 22:59:57
an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项
Tn=anb1+an-1b2+...+a1bn,证明Tn+12=-2an+10bn
Tn=anb1+an-1b2+...+a1bn,证明Tn+12=-2an+10bn
a(n)=2+(n-1)d.
s(n)=2n+n(n-1)d/2.
b(n)=2q^(n-1).
10=s(4)-b(4)=8+6d-2q^3,
27=a(4)+b(4)=2+3d+2q^3,
37=10+9d,d=3.
a(n)=2+3(n-1)=3n-1.
10=8+6d-2q^3=26-2q^3,
q^3=8,q=2.
b(n)=2*2^(n-1)=2^n
t(n)=a(n)b(1)+a(n-1)b(2)+...+a(1)b(n)=(3n-1)*2 + (3n-4)*2^2 + (3n-7)*2^3 + ...+8*2^(n-2)+5*2^(n-1) + 2*2^n,
2t(n)=(3n-1)*2^2 + (3n-4)*2^3 + (3n-7)*2^4 + ...+ 8*2^(n-1) + 5*2^n + 2*2^(n+1),
t(n)=2t(n)-t(n)=-(3n-1)*2 + 3[2^2 + 2^3 + ...+ 2^n] + 2^(n+2)
=2^(n+2) - 2(3n-1) + 12[1+2+...+2^(n-2)]
=2^(n+2)-2(3n-1)+12[2^(n-1)-1]
=2*2^(n+1)-6n+2 +3*2^(n+1)-12
=5*2^(n+1) - 6n - 10
-2a(n)+10b(n)=-2(3n-1)+10*2^n=5*2^(n+1) - 6n + 2 = t(n) + 12
s(n)=2n+n(n-1)d/2.
b(n)=2q^(n-1).
10=s(4)-b(4)=8+6d-2q^3,
27=a(4)+b(4)=2+3d+2q^3,
37=10+9d,d=3.
a(n)=2+3(n-1)=3n-1.
10=8+6d-2q^3=26-2q^3,
q^3=8,q=2.
b(n)=2*2^(n-1)=2^n
t(n)=a(n)b(1)+a(n-1)b(2)+...+a(1)b(n)=(3n-1)*2 + (3n-4)*2^2 + (3n-7)*2^3 + ...+8*2^(n-2)+5*2^(n-1) + 2*2^n,
2t(n)=(3n-1)*2^2 + (3n-4)*2^3 + (3n-7)*2^4 + ...+ 8*2^(n-1) + 5*2^n + 2*2^(n+1),
t(n)=2t(n)-t(n)=-(3n-1)*2 + 3[2^2 + 2^3 + ...+ 2^n] + 2^(n+2)
=2^(n+2) - 2(3n-1) + 12[1+2+...+2^(n-2)]
=2^(n+2)-2(3n-1)+12[2^(n-1)-1]
=2*2^(n+1)-6n+2 +3*2^(n+1)-12
=5*2^(n+1) - 6n - 10
-2a(n)+10b(n)=-2(3n-1)+10*2^n=5*2^(n+1) - 6n + 2 = t(n) + 12
an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项
已知{an}是等差数列,其前n项和为sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,s4-b4=10
已知{An}是等差数列,其前n项和为Sn,{Bn}是等比数列,且A1+B1=2,A4+Bb4=27,S4-B4=10
已知{an}是等差数列,其前n项为sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,s4-b4=10,求数列
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
数学 详细解答 已知an是等差数列,其前n项和为sn,bn是等比数列,且a1=b1=2,a4+b4=27,s4-b4=1
已知数列an是等差数列,其前n项和为sn,bn是等比数列,其前n项和为tn,且a1=b1=2,a4+b4=27,s4-b
已知{an}是等差数列,其前n项和为Sn;{bn}是等比数列,且a1=b1=1,a4+b4=-20,S4-b4=43.
已知{an}是等差数列,若其前n项和为Sn,{bn}等比数列,且a1=b1,a4+b4=27,S4-b4=10,求数列{
已知an是等差数列,其前n项和为sn,bn是等差数列,且a1=b1=2,a2+b4=21,b4-s3=,求数列
an为等差数列,bn为等比数列,a1=b1=1,a2+a4=b3,b2*b4=a3,求an的前10项和及bn
一道数列题目数列{an}的前n项和为Sn,且an是Sn和1的等差中项,等差数列{bn}满足b1=a1,b4=a4 求数列