已知:Sn=1+1/2+1/3+……+1/n,用数学归纳法证明:Sn^2>1+n/2(n>=2,n∈N+)
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 23:02:32
已知:Sn=1+1/2+1/3+……+1/n,用数学归纳法证明:Sn^2>1+n/2(n>=2,n∈N+)
Sn=1/1*2+1/2*3,...,1/n*(n+1)
=(1-1/2)+(1/2-1/3)+.+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)
用数学归纳法证:
当k=1时:S1=1/1*2=1/2 k/(k+1)=1/2 所以Sk=k/(k+1)
假设当k=n时成立,即:Sn=n/(n+1)
那么当k=n+1时,证明S(n+1)=(n+1)/(n+2)即可
S(n+1)=1/1*2+1/2*3,...,1/n*(n+1)+1/(n+1)(n+2)
=n/(n+1)+1/(n+1)(n+2)
=n(n+2)/(n+1)(n+2)+1/(n+1)(n+2)
=(n^2+2n+1)/(n+1)(n+2)
=(n+1)^2/(n+1)(n+2)
=(n+1)/(n+2)
所以综上:Sn=n/(n+1)
=(1-1/2)+(1/2-1/3)+.+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)
用数学归纳法证:
当k=1时:S1=1/1*2=1/2 k/(k+1)=1/2 所以Sk=k/(k+1)
假设当k=n时成立,即:Sn=n/(n+1)
那么当k=n+1时,证明S(n+1)=(n+1)/(n+2)即可
S(n+1)=1/1*2+1/2*3,...,1/n*(n+1)+1/(n+1)(n+2)
=n/(n+1)+1/(n+1)(n+2)
=n(n+2)/(n+1)(n+2)+1/(n+1)(n+2)
=(n^2+2n+1)/(n+1)(n+2)
=(n+1)^2/(n+1)(n+2)
=(n+1)/(n+2)
所以综上:Sn=n/(n+1)
已知:Sn=1+1/2+1/3+……+1/n,用数学归纳法证明:Sn^2>1+n/2(n>=2,n∈N+)
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
用数学归纳法证明:Sn=n^2+n
已知数列{an}中,a1=1,且Sn,Sn+1,2S1成等差数列,用数学归纳法证明Sn=(2^n-1)/2^(n-1)
已知数列{an}中,an=1+1/2+1/3+...+1/n,记sn=a1+a2+...+an用数学归纳法证明sn=(n
用数学归纳法证明 Sn=1+1/2+1/3+……+1/n.求证S2^n>1+n/2
已知正整数数列{an},(n∈N*)中,前n项和为Sn,且2Sn=an+1/an,用数学归纳法证明an=(根号下n)-(
已知Sn=2+5n+8n^2+…+(3n-1)n^n-1(n∈N*)求Sn
若数列{an}的前n项和为Sn,且满足:Sn=(3/2)an-2+n(n∈N*),用数学归纳法证明:an=3^(n-1)
用数学归纳法证明1+2+3+…+2n=n(2n+1)