已知双曲线C1:x2/a2-y2/b2的离心率为2,若抛物线C2:x2=2py的焦点到双曲线C1的渐近线的距离为2,若A
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 16:37:11
已知双曲线C1:x2/a2-y2/b2的离心率为2,若抛物线C2:x2=2py的焦点到双曲线C1的渐近线的距离为2,若A,B是C2上两点且OA⊥OB,则直线AB与y轴的交点的纵坐标为
A.8√3/3 B.16 c.8 D.16√3/3
A.8√3/3 B.16 c.8 D.16√3/3
抛物线焦点为F(0,p/2),
e=c/a=2,
∴c=2a,
b=√(c^2-a^2)=√(4a^2-a^2)=√3a,
双曲线一渐近线方程为:y=bx/a=√3x,
√3x-y=0,
抛物线焦点至双曲线一渐近线距离d=|0-p/2|/√(1+3)=|p|/4=2,
∴p=±8,
∴抛物线方程为:x^2=±16y,
设A(x1,y1),B(x2,y2),
向量OA=(x1,y1),
向量OB=(x2,y2),
∵OA⊥OB,
∴OA·OB=0.
x1x2+y1y2=0,
x1^2=16y1,
x2^2=16y2,
x1x2+(x1^2/16)(x2^2/16)=0,
x1x2+(x1x2)^2/256=0,
∴x1x2=-256,(1)
y1y2=256,(2)
设AB方程为:y=kx+m,
x^2=±16*(kx+m),
x^2±16kx-16m=0,
根据韦达定理,
x1*x2=-16m,
由(1)式得:-256=-16m,
∴m=16,
从直线方程x=kx+m可知,m是直线在Y轴的截距,即是交点的纵坐标,
∴直线AB与y轴的交点的纵坐标为16,应选 B.
e=c/a=2,
∴c=2a,
b=√(c^2-a^2)=√(4a^2-a^2)=√3a,
双曲线一渐近线方程为:y=bx/a=√3x,
√3x-y=0,
抛物线焦点至双曲线一渐近线距离d=|0-p/2|/√(1+3)=|p|/4=2,
∴p=±8,
∴抛物线方程为:x^2=±16y,
设A(x1,y1),B(x2,y2),
向量OA=(x1,y1),
向量OB=(x2,y2),
∵OA⊥OB,
∴OA·OB=0.
x1x2+y1y2=0,
x1^2=16y1,
x2^2=16y2,
x1x2+(x1^2/16)(x2^2/16)=0,
x1x2+(x1x2)^2/256=0,
∴x1x2=-256,(1)
y1y2=256,(2)
设AB方程为:y=kx+m,
x^2=±16*(kx+m),
x^2±16kx-16m=0,
根据韦达定理,
x1*x2=-16m,
由(1)式得:-256=-16m,
∴m=16,
从直线方程x=kx+m可知,m是直线在Y轴的截距,即是交点的纵坐标,
∴直线AB与y轴的交点的纵坐标为16,应选 B.
已知双曲线C1:x2/a2-y2/b2的离心率为2,若抛物线C2:x2=2py的焦点到双曲线C1的渐近线的距离为2,若A
已知双曲线C1:x2/a2-y2/b2=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双
已知双曲线x2/a2-y2/b2=1(a>0 b>0)的离心率为2 若抛物线c2:X²=2py(p>0)的焦点
线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为5的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的
设F是双曲线x2/a2-y2/b2=1的右焦点,双曲线两渐近线分别为C1,C2过F作直线C1的垂线,分别交C1,C2于A
已知双曲线x2/a2-y2/b2=1的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为
(2012•上高县模拟)已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py
已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为
2012山东 已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为(根号3/2).双曲线x2-y2=1的渐近线
已知双曲线x2/a2-y2/b2=1的离心率为2,焦点与椭圆x2/25+y2/9=1相同,那么双曲线的焦点坐标为渐近线方
已知椭圆C1:x2/a2+y2/b2=1的左右两焦点为F1,F2,离心率为1/2,抛物线C2:y2=4mx(m>0)与椭
已知椭圆C1:X2/a2+Y2/b2的一条准线方程为x=25/4,其左右顶点分别是A、B.双曲线C2:X2/a2-Y2/