对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OA
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:49:42
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OAn·OBn)的
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OAn·向量OBn)的前2011项和
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OAn·向量OBn)的前2011项和
设直线L方程:ay=x-2n
( 说明:为什么这么设而不设y=k(x-2n)?
因为设成y=k(x-2n),那么就不包括垂直于x轴的直线x=2n,而ay=x-2a包括直线x=2n.
那么你又会问:但“ay=x-2n”不包括直线y=0啊?
因为直线L与抛物线相交两点就知道直线L不可能是直线y=0,所以直线L可设成“ay=x-2n”.
ps:碰到类似的的题目也可以这么设.)
由抛物线y^2=2(2n+1)x
故可设An(yAn/(4n+2),yAn),Bn(yBn/(4n+2),yBn)
∴向量OAn·向量OBn=[(yAn·yBn)²/(4n+2)]+(yAn·yBn).①
由y=k(x-2n),y^2=2(2n+1)x
两式联立得y²-(4n+2)ay-(8n²+4n)=0
由韦达定理得yAn·yBn=-(8n²+4n)
将其代入①式得
向量OAn·向量OBn=-4n²-4n
∴4/向量OAn·向量OBn=1/(-n²-n)=[1/(n+1)]-1/n
所以
数列{4/向量OAn·向量OBn}的前2011项和
S2011=-[(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+(1/2011-1/2012)]
=-(1-1/2012)
=-2011/2012
( 说明:为什么这么设而不设y=k(x-2n)?
因为设成y=k(x-2n),那么就不包括垂直于x轴的直线x=2n,而ay=x-2a包括直线x=2n.
那么你又会问:但“ay=x-2n”不包括直线y=0啊?
因为直线L与抛物线相交两点就知道直线L不可能是直线y=0,所以直线L可设成“ay=x-2n”.
ps:碰到类似的的题目也可以这么设.)
由抛物线y^2=2(2n+1)x
故可设An(yAn/(4n+2),yAn),Bn(yBn/(4n+2),yBn)
∴向量OAn·向量OBn=[(yAn·yBn)²/(4n+2)]+(yAn·yBn).①
由y=k(x-2n),y^2=2(2n+1)x
两式联立得y²-(4n+2)ay-(8n²+4n)=0
由韦达定理得yAn·yBn=-(8n²+4n)
将其代入①式得
向量OAn·向量OBn=-4n²-4n
∴4/向量OAn·向量OBn=1/(-n²-n)=[1/(n+1)]-1/n
所以
数列{4/向量OAn·向量OBn}的前2011项和
S2011=-[(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+(1/2011-1/2012)]
=-(1-1/2012)
=-2011/2012
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OA
已知抛物线p y=2x,直线l与抛物线p 交于两点m n.若向量om乘向量on=-1恒成立,则直线l必过点?
已知抛物线C:y^2=2px(p>0)过点A(1,2),不过点A的直线l:x=my+n交抛物线C于P,Q两点,且向量AP
已知抛物线X^2=4y,过点A(0,1)任意作一条直线l交抛物线C于M.N,O为坐标原点,(1),求向量OM乘向量ON
过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点
已知过点P(0,-2)的直线l交抛物线Y^2=4X于A,B两点,若向量OA*向量OB=4,求l方程
过点(1,0)作倾斜角4分之π的直线,与抛物线y²=2x交于M.N两点,则|MN|=
设抛物线G:y^2=4x的焦点F,过点P(-n,0)(n∈N+)作抛物线G的切线,求切线方程
直线过抛物线C:x^2=2py(p>0)的焦点F与抛物线C交于A,B两点,过线段AB的中点M作x轴的垂线交抛物线于N点,
给抛物线C:y^2=4x,F是C的焦点,过点F且斜率为1的直线l交抛物线于A、B两点.求向量OA与向量OB的夹角
已知抛物线y^2=4x,点M(1,0)关于y轴对称的对称点为N,直线l过点M交抛物线于AB两点
过点P(0,4)作圆x^2+y^2=4的切线l,l与抛物线y^2=2px(p>0)交于A,B两点.若OA垂直OB,求p的