作业帮 > 数学 > 作业

对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OA

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:49:42
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OAn·OBn)的
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OAn·向量OBn)的前2011项和
对正整数n,设抛物线y^2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,求数列(4/向量OA
设直线L方程:ay=x-2n
( 说明:为什么这么设而不设y=k(x-2n)?
因为设成y=k(x-2n),那么就不包括垂直于x轴的直线x=2n,而ay=x-2a包括直线x=2n.
那么你又会问:但“ay=x-2n”不包括直线y=0啊?
因为直线L与抛物线相交两点就知道直线L不可能是直线y=0,所以直线L可设成“ay=x-2n”.
ps:碰到类似的的题目也可以这么设.)
由抛物线y^2=2(2n+1)x
故可设An(yAn/(4n+2),yAn),Bn(yBn/(4n+2),yBn)
∴向量OAn·向量OBn=[(yAn·yBn)²/(4n+2)]+(yAn·yBn).①
由y=k(x-2n),y^2=2(2n+1)x
两式联立得y²-(4n+2)ay-(8n²+4n)=0
由韦达定理得yAn·yBn=-(8n²+4n)
将其代入①式得
向量OAn·向量OBn=-4n²-4n
∴4/向量OAn·向量OBn=1/(-n²-n)=[1/(n+1)]-1/n
所以
数列{4/向量OAn·向量OBn}的前2011项和
S2011=-[(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+(1/2011-1/2012)]
=-(1-1/2012)
=-2011/2012