一道大学微积分题证明:曲线x2/3 + y2/3 =1 (x和y的三分之二次方)的切线在第一象限的长度总是1.(用隐函数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 00:54:26
一道大学微积分题
证明:曲线x2/3 + y2/3 =1 (x和y的三分之二次方)的切线在第一象限的长度总是1.(用隐函数微分法)
证明:曲线x2/3 + y2/3 =1 (x和y的三分之二次方)的切线在第一象限的长度总是1.(用隐函数微分法)
设F(x,y)= x2/3 + y2/3 -1
先对x求偏导数 再对 y求偏导数 在(x0,y0)点处的偏导数
Fx(x,y)=(2/3)x0^(-1/3)
Fy(x,y)=(2/3)y0^(-1/3)
切线就是 (2/3)x0^(-1/3)(x-x0)+(2/3)y0^(-1/3)(y-y0)=0
x0^(-1/3)(x-x0)+y0^(-1/3)(y-y0)=0
第一象限 x0 ,y0>0
求xy轴的正半轴交点 (0,x0^(2/3)y0^(1/3)+y0)
(y0^(2/3)x0^(1/3)+x0,0)
求距离 ={^2+^2}^(1/2)
x0,y0 还满足方程x2/3 + y2/3 =1 x0^(2/3)+y0^(2/3)=1
距离 ={^2+^2}^(1/2)
={^2+^2}^(1/2)
={^2+^2}^(1/2)
={x0^(2/3)+y0^(2/3)}^(1/2)
=1
先对x求偏导数 再对 y求偏导数 在(x0,y0)点处的偏导数
Fx(x,y)=(2/3)x0^(-1/3)
Fy(x,y)=(2/3)y0^(-1/3)
切线就是 (2/3)x0^(-1/3)(x-x0)+(2/3)y0^(-1/3)(y-y0)=0
x0^(-1/3)(x-x0)+y0^(-1/3)(y-y0)=0
第一象限 x0 ,y0>0
求xy轴的正半轴交点 (0,x0^(2/3)y0^(1/3)+y0)
(y0^(2/3)x0^(1/3)+x0,0)
求距离 ={^2+^2}^(1/2)
x0,y0 还满足方程x2/3 + y2/3 =1 x0^(2/3)+y0^(2/3)=1
距离 ={^2+^2}^(1/2)
={^2+^2}^(1/2)
={^2+^2}^(1/2)
={x0^(2/3)+y0^(2/3)}^(1/2)
=1
一道大学微积分题证明:曲线x2/3 + y2/3 =1 (x和y的三分之二次方)的切线在第一象限的长度总是1.(用隐函数
求曲线y=x2(X的2次方)+x3(X的3次方)在点(1,2)处的切线方程?
试求曲线y=e^(-x)* (x+1)^(1/3)在点(0,1)及点(-1,0)处的切线方程和法线方程.利用微积分隐函数
求曲线y=x2+2x在点(1,3)处的切线方程
直线x+3y−m=0与圆x2+y2=1在第一象限内有两个不同的交点,则m的范围( )
设函数f(x)=ax+1/x+b,曲线y=f(x)在点(2,f(2)) 处的切线方程为y=3 证明
曲线y=3x2-2x+1\x2+2在点(-1,0)处的切线方程
已知点p(x y)是圆x2+y2=9在第一象限的点则x∫1+y2的最大值是多少?
二重积分~两题两题∫∫(e^x2)dxdy,D由y=x,y=x^3所围在第一象限∫∫e^-y2(即系e的-y^2次方),
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l
求曲线 x2+xy+2y2-28=0 在点(2,3)处的切线方程和法线方程,
已知圆C:x2+y2+4x-2y+3=0,(1)若圆C的切线在x轴,y轴截距相等,求该切线方程